PIRE Webinar: Introduction to Interferometry

Dan Marrone
University of Arizona

Useful Resources

ERA TMS

(Referenced in subsequent slides)

Radio Interferometers

Radio Interferometers

Why Interferometry?

Resolution and collecting area

Telescope size, surface accuracy, and pointing are jointly limited

$$\theta_{res} \approx 2'' \times \frac{\lambda_{\rm cm}}{D_{\rm km}}$$

Limited?

Limited!

Why Interferometry?

Resolution and collecting area

Telescope size, surface accuracy, and pointing are jointly limited

- Interferometers can provide:
 - highest resolution (EHT: $\lambda/D > 10G\lambda!$)
 - largest collecting area
 - large number of resolution elements large field of view with high sensitivity
 - highest astrometric precision

Consider a 1-D antenna of length D transmitting at frequency ν $(\lambda=c/\nu)$

Calculate field at point A at large distance R

Consider small segment dx at position x, with field g(x).

Electric field contribution at point A is

$$dE \propto \frac{g(x)}{r(x)} \exp(-i2\pi r(x)/\lambda) dx$$

Consider a 1-D antenna of length D transmitting at frequency ν ($\lambda = c/\nu$)

Calculate field at point A at large distance R

Consider small segment dx at position x, with field g(x).

Electric field contribution at point A is

$$dE \propto \frac{g(x)}{r(x)} \exp(-i2\pi r(x)/\lambda) dx$$

In coefficient: $1/r(x) \simeq 1/R$

In exponent: $r(x) = R + x\sin\theta \approx R + xl$ (for small θ , and $l \equiv \sin\theta$)

$$dE \propto \frac{g(x)}{R} \exp(-i2\pi R/\lambda) \exp(-i2\pi x l/\lambda) dx$$

Consider a 1-D antenna of length D transmitting at frequency ν ($\lambda = c/\nu$)

Calculate field at point A at large distance R

Consider small segment dx at position x, with field g(x).

Electric field contribution at point A is

$$dE \propto \frac{g(x)}{r(x)} \exp(-i2\pi r(x)/\lambda) dx$$

In coefficient: $1/r(x) \simeq 1/R$

In exponent: $r(x) = R + x\sin\theta \approx R + xl$ (for small θ , and $l \equiv \sin\theta$)

$$dE \propto \frac{g(x)}{R} \exp(-i2\pi R/\lambda) \exp(-i2\pi x l/\lambda) dx$$

Now, define $u \equiv x/\lambda$, absorb constants into g, and integrate to get $E(\mathbf{A})$

$$E = \int g(u) e^{-i2\pi u l} du$$

Consider a 1-D antenna of length D transmitting at frequency ν ($\lambda = c/\nu$)

Calculate field at point A at large distance R

Consider small segment dx at position x, with field g(x).

Electric field contribution at point A is

$$dE \propto \frac{g(x)}{r(x)} \exp(-i2\pi r(x)/\lambda) dx$$

In coefficient: $1/r(x) \simeq 1/R$

In exponent: $r(x) = R + x\sin\theta \approx R + xl$ (for small θ , and $l \equiv \sin\theta$)

$$dE \propto \frac{g(x)}{R} \exp(-i2\pi R/\lambda) \exp(-i2\pi x l/\lambda) dx$$

Now, define $u \equiv x/\lambda$, absorb constants into g, and integrate to get $E(\mathbf{A})$

$$E = \int g(u) e^{-i2\pi u l} du$$

• Antenna beam is **Fourier Transform** of antenna illumination pattern g(x)!

- Larger aperture in λ/D
 - → smaller beam on sky (FT similarity theorem)

Field Pattern

Actual antennas usually "taper" g(u)

 Blockage, surface errors, etc., can be included in beam pattern via FT

Power Pattern (PSF)

• Two small apertures -> plane wave

Antenna Illumination Pattern

Field Pattern

Power Pattern (PSF)

Assumptions:

- Distant point source
 (→ plane wave)
- Monochromatic

Antenna 1

$$V_1 = V \cos 2\pi \nu (t - \tau_g)$$
$$\tau_g = \frac{D \sin \theta}{c}$$

Assumptions:

- Distant point source (→ plane wave)
- Monochromatic

 \rightarrow 0 when averaging over t >> 1/(2 ω)

Assumptions:

- Distant point source (→ plane wave)
- Monochromatic

Antenna 1

$$V_1 = V \cos 2\pi \nu (t - \tau_g)$$
$$\tau_g = \frac{D \sin \theta}{c}$$

$$F = \langle V_1 V_2 \rangle = \langle V^2 \cos \omega t \cos \omega (t - \tau_g) \rangle$$
$$= \frac{V^2}{2} \cos \omega \tau_g$$
$$V^2 = \langle D \rangle$$

$$F = \frac{V^2}{2} \cos \left(2\pi \frac{D}{\lambda} \sin \theta \right)$$

Periodic oscillation, as D sin Θ changes by λ

Antenna 1

$$V_1 = V \cos 2\pi \nu (t - \tau_g)$$
$$\tau_g = \frac{D \sin \theta}{c}$$

$$F = \langle V_1 V_2 \rangle = \langle V^2 \cos \omega t \cos \omega (t - \tau_g) \rangle$$
$$= \frac{V^2}{2} \cos \omega \tau_g$$

$$F = \frac{V^2}{2} \cos \left(2\pi \frac{D}{\lambda} \sin \theta \right)$$

Complex correlator:

F' provides missing fringe information

Resolution?

$$\begin{array}{ccc} \boldsymbol{\Delta} \left(2\pi \frac{D}{\lambda} sin \, \theta \right) & \sim & 2\pi \\ & \frac{D}{\lambda} \boldsymbol{\Delta} \left(sin \, \theta \right) & \sim & 1 \end{array}$$

 $oldsymbol{\Delta} heta \sim rac{\lambda}{D}$

"Fringe spacing" is determined by telescope separation

What if signal is not monochromatic?

Assume bandwidth $\Delta \nu$ around ν_0

$$F = \frac{1}{\Delta \nu} \int_{\nu_0 - \Delta \nu/2}^{\nu_0 + \Delta \nu/2} \frac{V^2}{2} \cos \left[\frac{2\pi D \nu}{c} \sin \theta \right] d\nu$$

$$F = \frac{V^2}{2} \cos \left[\frac{2\pi D\nu_0}{c} \sin \theta \right] \frac{\sin \left[\frac{\pi D\Delta\nu}{c} \sin \theta \right]}{\frac{\pi D\Delta\nu}{c} \sin \theta}$$
$$= F_{\nu_0} \sin c \left[\frac{D\Delta\nu}{c} \sin \theta \right] = F_{\nu_0} \sin c \left[\tau_g \Delta\nu \right]$$

$$\tau_g = \frac{D\sin\theta}{c}$$

Same fringe, with sinc $(=\sin(\pi x)/(\pi x))$ envelope

What if signal is not monochromatic? Assume bandwidth Δv around v_0 $\begin{bmatrix} D\cos\theta \\ \theta \end{bmatrix}$ Antenna 1

$$F = F_{\nu_0} \operatorname{sinc} \left[\tau_g \Delta \nu \right]$$

Bandwidth restriction is extremely stringent for useful baseline lengths

 $\Delta \nu \ll 1/\tau_{\rm g}$ 1km baseline implies $\Delta \nu \ll 300 {\rm kHz}$

Interferometers designed for imaging small scales must remove $au_{ exttt{g}}$

This is "Delay tracking"

- Idealized interferometer
 - Two antennas, A₁ at (x,y) and A₂ at (0,0) for simplicity
 - Source in direction r emitting electric field $\mathcal{E}(x',y')$
- Simplifying assumptions (can be relaxed)
 - Source is very distant
 - Monochromatic source
 - Ignore polarization
 - Source is spatially incoherent
 - Nothing between antennas and source

- What do we measure when we multiply E fields at two antennas?
- Field received at Antenna 1 (similar for A₂):

$$E_1(x', y', t) = \frac{\mathcal{E}(x', y', t - r_1/c)}{z} e^{-2\pi i \nu (t - r_1/c)}$$

 Define the spatial correlation function between fields measured at positions of A₁ and A₂

$$R_{12}(x', y', \vec{r_1}, \vec{r_2}) = \langle E_1 E_2^* \rangle$$

$$= \frac{1}{z^2} \langle \mathcal{E}(x', y', t) \mathcal{E}^*(x', y', t) \rangle e^{2\pi i \nu (\vec{r_1} - \vec{r_2})/c} dx' dy'$$

• Note: this is time-averaged source intensity I(x', y')

$$\langle \mathcal{E}(x', y', t)\mathcal{E}^*(x', y', t)\rangle \equiv I(x', y')$$

^{*} Assumed sampled bandwidth small compared to frequency so that field is similar across propagation time difference to drop r from $\mathcal E$

What do we measure when we multiply E fields at two antennas?

- Simplify distance difference:
 - If source far away, $z \gg (x'-x)$, and so:

$$r_1 = \sqrt{z^2 + (x' - x_1)^2 + (y' - y_1)^2} \approx z \left[1 + \frac{(x' - x_1)^2}{2z^2} + \frac{(y' - y_1)^2}{2z^2} \right]$$
$$r_2 = \sqrt{z^2 + x'^2 + y'^2} \approx z \left[1 + \frac{x'^2}{2z^2} + \frac{y'^2}{2z^2} \right]$$

• Difference between r₁ and r₂:

$$r_1 - r_2 \approx -\frac{1}{z} \left[x' D_x + y' D_y - \frac{1}{2} \left(D_x^2 + D_y^2 \right) \right]$$
 (D_x = X₁-X₂)

• And if wavefront curvature small (in "far field"), then:

$$r_1 - r_2 \approx -\frac{x'D_x}{z} - \frac{y'D_y}{z}$$

What do we measure when we multiply E fields at two antennas?

- Define convenient coordinates
 - Convert x', y' to angles:

$$l = \frac{x'}{z}$$
 $m = \frac{y'}{z}$ $\frac{dx'}{z} = dl$ $\frac{dy'}{z} = dm$

$$\frac{dx'}{z} = dl \qquad \frac{dy'}{z} = dm$$

• Express D_x , D_y in wavelengths

$$u = \frac{D_x}{\lambda} \qquad v = \frac{D_y}{\lambda}$$

• Simplify:

$$\frac{\nu}{c}(r_1 - r_2) = \frac{r_1 - r_2}{\lambda} \approx -(ul + vm)$$

What do we measure when we multiply E fields at two antennas?

What do we measure when we multiply E fields at two antennas?

What do we measure when we multiply E fields at two antennas?

• Now, define "**visibility**" as integral of R_{12} over sky:

$$V\left(u,v\right)=\iint I(l,m)\,e^{-2\pi i\,(ul+vm)}dl\,dm$$
 It's a Fourier Transform! One spatial frequency (u,v) measured per baseline

• Of course, interferometers only sample some *uv* spacings

- Of course, interferometers only sample some *uv* spacings
 - Largest *uv* distances determine resolution
 - Inner *uv* hole → Missing large-scale emission (sky is high-pass filtered)

- Baseline coordinates (u, v, w) are projection of telescope separation into plane perpendicular to source direction (u, v) and toward source (w)
- Baseline coordinates: X, Y, Z
 - For VLBI, X Y defined using Greenwich meridian

 Baseline coordinates (u, v, w) are projection of telescope separation into plane perpendicular to source direction (u, v) and toward source (w)

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} \sin H & \cos H & 0 \\ -\sin \delta \cos H & \sin \delta \sin H & \cos \delta \\ \cos \delta \cos H & -\cos \delta \sin H & \sin \delta \end{bmatrix} \begin{bmatrix} X_{\lambda} \\ Y_{\lambda} \\ Z_{\lambda} \end{bmatrix}.$$

 Baseline coordinates (u, v, w) are projection of telescope separation into plane perpendicular to source direction (u, v) and toward source (w)

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} \sin H & \cos H & 0 \\ -\sin \delta \cos H & \sin \delta \sin H & \cos \delta \\ \cos \delta \cos H & -\cos \delta \sin H & \sin \delta \end{bmatrix} \begin{bmatrix} X_{\lambda} \\ Y_{\lambda} \\ Z_{\lambda} \end{bmatrix}.$$

• From above, u, v can be rearranged:

$$u^2 + \left(\frac{v - Z_\lambda \cos \delta_0}{\sin \delta_0}\right)^2 = X_\lambda^2 + Y_\lambda^2.$$

- Offset in $v: Z \cos \delta$
- Ellipsoid axis ratio: $\sin \delta$

- Some sample visibility functions
- Reminder: Visibility function is complex number
 - Complex correlator provides in-phase and quadrature-phase outputs, giving the real (cosine) and imaginary (sine) components
 - Can also be expressed as amplitude and phase

$$V(u,v) = V_R + i V_I = |V| e^{i\theta}$$

100 Jansky point source offset from phase center

RA, DEC = 0:00:00.000, 30:00:00.00 at pixel (129.00, 129.00) Spatial region : 65,65 to 192,192

Pixel map image: testIpt Min/max=0/100 Range = 0 to 100 JY/PIXEL (lin)

Visibility amplitude for 100 Jy point source

UU, VV = 0.000000000E+00, 0.00000000E+00 at pixel (129.00, 129.00) Spatial region : 1.1 to 256,256 Pixel map image: test1pt.am Min/max=100/100 Range = 0 to 180 (lin)

Visibility phase for offset 100 Jy point source

UU, VV = 0.00000000E+00, 0.00000000E+00 at pixel (129.00, 129.00)

Spatial region: 1,1 to 256,256

Pixel map image: test1pt.ph Min/max=-180/180 Range = -180 to 180 DEGREES (lin)

100 Jy gaussian source offset from phase center

RA, DEC = 0:00:00.000, 30:00:00.00 at pixel (129.00, 129.00)

Spatial region: 1.1 to 256,256

Pixel map image: testigous Min/max=0/0.4413 Range = 0 to 0.44 JY/PIXEL (lin)

Visibility amplitude for 100 Jy gaussian source

UU, VV = 0.00000000E+00, 0.00000000E+00 at pixel (129.00, 129.00) Spatial region : 1.1 to 256,256

Pixel map image: testIgaus.am Min/max=0/100 Range = 0 to 100 (sqr)

Visibility phase for offset 100 Jy gaussian source

UU, VV = 0.00000000E+00, 0.00000000E+00 at pixel (129.00, 129.00)

Spatial region: 1,1 to 256,256

Pixel map image: test1gaus.ph Min/max=-180/180 Range = -180 to 180 DEGREES (lin)

Visibility phase for offset 100 Jy gaussian source

UU, VV = 0.00000000E+00, 0.00000000E+00 at pixel (129.00, 129.00)

Spatial region: 1,1 to 256,256

Pixel map image: test1gaus.ph Min/max=-180/180 Range = -180 to 180 DEGREES (lin)

100 Jy elliptical unif. disk and 50 Jy circular unif. disk

RA, DEC = 0:00:00.000, 30:00:00.00 at pixel (129:00, 129:00)

Spatial region: 1.1 to 256,256

Pixel map image: test2disk Min/max=0/0.6366 Range = 0 to 0.6366 JY/PIXEL (lin)

Visibility amplitude for elliptical plus circular disks

Visibility amplitude at (U,V)=(0,0) is total flux from both sources, 150 Jy.

Sharp edges in source create lots of high spatial frequency content (note log stretch in color wedge)

UU, VV = 0.00000000E+00, 0.00000000E+00 at pixel (129.00, 129.00)

Spatial region : 1,1 to 256,256

Pixel map image: test2disk.am Min/max=0.01107/148.8 Range = 0 to 150 (log)

Visibility amplitude for elliptical plus circular disks

UU, VV = 0.00000000E+00, 0.00000000E+00 at pixel (129.00, 129.00)

Spatial region: 1,1 to 256,256

Pixel map image: test2disk.am Min/max=0.01107/148.8 Range = 0 to 150 (log)

• uv coverage (FT of beam) **multiplies** 2D visibility function (FT of image) So "dirty beam" is **convolved** with true image

- uv coverage (FT of beam) multiplies 2D visibility function (FT of image)
 So beam is convolved with true image
- Deconvolution techniques are central to understanding these "images"

Closing Remarks

Fill out the evaluation!
 <u>bit.ly/BH_Interferometry_Survey</u>

- Future webinars!
 - March 11: VLBI Data Series: Session 1 Handling Data, Managing Errors
 - March 18: VLBI Data Series: Session 2 Imaging Techniques
 - May 5: VLBI Data Series Session 3 Model Comparison