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• Interferometry and Synthesis in Radio Astronomy 
Thomson, Moran, Swenson (TMS)

• Synthesis Imaging in Radio Astronomy II 
Ed: Taylor, Carilli, Perley

• KVN Lecture Notes 
Sasao, Fletcher

• Synthesis and Imaging Workshop 2018 Presentations 
NRAO
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Resources

https://link.springer.com/book/10.1007/978-3-319-44431-4
https://ui.adsabs.harvard.edu/search/q=pub:%22Synthesis%20Imaging%20in%20Radio%20Astronomy%20II%22
https://www.google.com/search?as_q=kvnlecnote&as_sitesearch=astro.sci.yamaguchi-u.ac.jp
https://science.nrao.edu/science/meetings/2018/16th-synthesis-imaging-workshop/16th-synthesis-imaging-workshop-lectures
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Figure 5:

Schematic portrayal of the locations of the Very Long Baseline Array (VLBA) antennas. The
VLBA has ten 25-m diameter antennas spanning the globe from Hawaii to New Hampshire and
St. Croix.

a maximum baseline length of 2300 km (see Figure 6). Each antenna is equipped with

two receiver systems that are independently steerable in the focal plane. As such VERA

can observe target and reference sources simultaneously to e↵ectively cancel tropospheric

fluctuations. VERA is also the only array dedicated full-time to phase-referencing astrome-

try. Most of the observing time is spent on parallax measurements of maser sources tracing

spiral structure in the Milky Way and of red giant stars.

The EVN array has antennas distributed across Europe as well as in other countries,

including China, South Africa and USA. The EVN is most sensitive at frequencies < 10

GHz, owing to some large antennas: the E↵elsberg 100-m, the Jodrell Bank 76-m and soon

the Sardinia 64-m telescope. The array has been used for astrometric measurements of OH

masers at 1.6 GHz, methanol masers at 6.7 GHz, and active stars.

The LBA in Australia is the only VLBI array regularly operating in the southern hemi-

sphere. It has high sensitivity when the Parkes 64-m and Tidbinbilla 70-m telescopes

are included. The LBA has provided astrometric measurements for southern pulsars, and

hopefully it will soon be used for maser parallaxes. This is necessary in order to trace the

3-dimensional structure of the roughly one-third of the Milky Way that cannot be observed

from the north.

18 Reid & Honma

1. Earth is round & moving

2. Irregular delays from troposphere/ionosphere

3. Different atmospheric and receiver noise

4. Various electronics and path delays

5. Independent and imperfect clocks at all stations

6. Post-digitization artifacts

7. Unexpected data issues
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Ingredients of a VLBI measurement

Reid & Honma

We just need to measure E1 and E2 at various 
locations in the plane of propagation, but..

In data reduction, we are asked to “hide” as many of 
these effects as possible (without ruining the data)
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VLBI data and calibration pathway

Raw signals
[PB]

Correlation
[TB]

Calibration
[MB]

Analysis
[kB]
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VLBI signal

EHTC 2019 ApJL 875 (Paper II) 
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Figure 1. Stages of the EHT-HOPS pipeline and post-processing steps. Stages 1–5 represent iterations of HOPS fringe fitter fourfit, where
the input data for each stage are the original correlator output files (converted from DiFX native to Mark4 format), and the output data are
a series of reduced HOPS native fringe files (averaged visibility data plus fringe solutions) and auxiliary calibration parameters (described in
the inner boxes) used to refine the fringe search for successive stages. The order of the stages is not fundamental to the calibration process
but is largely determined by which up-front corrections are needed to provide more precise downstream estimation of calibration parameters.
After an initial run with a priori fringe search windows, channel configuration, and data flags, the residual phase bandpass and differential
phase vs. time (ad-hoc phase) are calibrated to a reference station in the array during stages 2 and 3. At stage 4, precise delays are measured
and aligned between RCP and LCP feeds at each station, so that a single global (station-based) fringe solution in delay and delay rate can be
solved for and applied in stage 5. The output of stage 5 is converted to UVFITS format, and a remaining suite of post-processing tools provide
amplitude calibration and time- and polarization-dependent phase calibration, as these cannot currently be performed within fourfit. A final
stage of network calibration folds in a priori information about array redundancy and total flux density to self-calibrate colocated sites in a
model-independent way.
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Figure 2. Simplified signal path reflecting the bandpass response
of one antenna given input source s( f ) and system noise n( f )
signals represented in the frequency domain. Transfer functions
H( f ) and G( f ) represent the scaling and shaping of signals as they
pass through components of the environment and instrument. The
recorded digitized signal x( f ) = G(Hs + n) + q.

where S is the flux density of the (unpolarized) source that
generates s. Ignoring quantization and assuming a noise-
dominated signal, the autocorrelation spectrum of the re-
ceived signal x is

hxx⇤i = h|Gn|
2
i (6)

and the cross-correlation spectrum is

hx1x⇤2i = hs1s⇤2iH1G1H⇤
2 G⇤

2 (7)

as the system noise between sites is uncorrelated.
On a single baseline, the bandpass from both antennas

1 and 2 will directly affect the correlation coefficient mea-
sured (Equation 1). The DiFX software correlator (Deller
et al. 2011), used for both EHT and GMVA correlation,
computes hx1x⇤2i averaged over 1 subchannel (⇠0.5 MHz)

and 1 AP (accumulation period, ⇠0.5 s), as illustrated in
Figure 3. The values for each AP are then normalized
by their channel-average autocorrelation power during the
DiFX!Mark4 data conversion stage (using DiFX conver-
sion tool difx2mark4). This step removes the “autocor-
relation” amplitude bandpass |G1G⇤

2 | (at the resolution of a
full channel) but leaves the residual cross-power amplitude
bandpass from |H1H⇤

2 /hn1n⇤
2i| that reflects changes in SEFD

over frequency. Also left is the combined phase bandpass,
Arg[H1G1H⇤

2 G⇤
2 ] = ✓1 -✓2, which reflects very small and sta-

ble changes in instrumental path length as a function of fre-
quency.

Stage 2 in the EHT-HOPS pipeline estimates and provides
corrections for the relative phase bandpass over a baseline
by averaging over an ensemble of high-S/N cross-correlation
measurements to a common reference station. High-S/N
fringes from the reference station (generally ALMA) to other
stations in the network are taken from stage 1 output to es-
timate a single baseline phase and phase slope per 58 MHz
channel by direct S/N-weighted average. Baselines that do
not contain the reference antenna (station 0) can then be as-
sumed to be subject to phase bandpass �i j = �0 j -�0i.

Because fourfit output is already channel averaged,
it is not possible to directly measure intrachannel phase
bandpass from detected fringes, regardless of S/N. Gener-
ally the phase evolution across each 58 MHz channel is small
(< 10�), as is any possible coherence loss from residual intra-
channel phase variation. To track situations of more rapid in-
trachannel phase variation, particularly near the 2 GHz band

Linear components (bandpass, delay, dispersion)

There are two important bandpass effects H(f) and G(f), 
sometimes factored into a real (autocorr) and complex BP

Non-linear effects (delay-rate, atmospheric phase) must be 
described using time-dependent factors
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et al. 2011), used for both EHT and GMVA correlation,
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corrections for the relative phase bandpass over a baseline
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Gains, Polarization, and the Measurement Equation

Propagation of the astrophysical signal E through measurement v can be characterized by complex gain factors g

Signal and ensemble averages are parameterized in time and frequency, which requires that g is varying (relatively) slowly 

Tracking various physical propagation effects, as well as non-zero off-diagonal “D” terms (leakage across feeds, or 
change of polarization basis), leads to Jones matrix formalism used by the Measurement Equation
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For two orthogonal feeds of an antenna, this can be written in matrix form,
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This is a very useful structure! One still must adopt good models for all the Jones matrices.. also track noise..

Why so many? Physical model generally allows for least complexity. Note that matrices do not necessarily commute!

(see Smirnov 2011)
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https://ui.adsabs.harvard.edu/abs/2011A&A...527A.106S/abstract
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is small

➔ average >108 samples for detection
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Flux calibration (a priori)

The correlation coefficient is normalized by the system noise in the separate receiving systems

Relating this to physical units of correlated flux density requires a calibration of the noise power

the EHT array, SMT, PV, and APEX have characterized gain
curves. The gain curve is parameterized as a second-order
polynomial about the elevation at maximum efficiency:

I � � �( ) ( )B1 el el . 7el max
2

The JCMT has no elevation dependence at 230 GHz as it is
operating at the lower end of its frequency range. The LMT has
an adaptive surface that is able to actively correct for surface
deformation as a function of elevation. Through observations
of planets, the LMT was determined to have a flat 1.3 mm
gain between 25° and 80° to within 10% uncertainty. At the
SPT, the elevation of extra-solar sources is constant, and
therefore possible elevation-dependent efficiency losses remain
uncharacterized.

We also mitigate a number of pathological issues uncovered
in the 2017 data affecting the visibility amplitudes in a priori
calibration. Additional loss of coherence in the signal chain at
PV due to impurities in the LO, an excess noise contribution at
APEX due to the inclusion of a timing signal, and the partial
SMA channel dropouts were identified during data processing.
Correction factors for the visibility amplitudes on baselines to
these sites were estimated, as explained in the Appendix. These
correction factors translate to a square multiplicative effect on
the station-based SEFDs, as shown in Table 2. In the a priori
calibration metadata, the multiplicative factors were folded into
the DPFUs for PV and APEX and into the *Tsys measurements
for SMA (due to its time dependence). Representative median
values for the aperture efficiency, DPFU, effective system
temperature, and SEFD on EHT primary targets (M87 and
Sgr A*) for each station participating in the EHT 2017
observations are shown in Table 2. A site-by-site overview of
the derivation of a priori calibration quantities is given in a
technical memo (Janssen et al. 2019b).

6.1.2. Calibrating Visibility Amplitudes

The *Tsys, DPFU, and elevation gain data for all stations are
aggregated in ANTAB format text files. They are subsequently
matched with observed visibilities for a given source using
linear interpolation. Visibility amplitudes are calibrated in units
of flux density by multiplying the normalized visibility
amplitudes by the geometric mean of the derived SEFDs of

the two stations across a baseline i–j:

� q∣ ∣ ∣ ∣ ( )V rSEFD SEFD , 8ij i j ij

where ∣ ∣Vij is then the calibrated visibility amplitude in Jy on
that baseline, as in Equation (2).
Figure 10 shows the scan-averaged S/N on individual

baselines, which is proportional to the phase-calibrated
correlated signal, as a function of the projected baseline length
(top panel), and the equivalent correlated flux density after
a priori calibration (center panel) for observations of M87 (left)
and 3C 279 (right) on April 11. The split in the S/N
distributions is due to the difference in sensitivity between
the co-located sites ALMA and APEX, leading to simultaneous
baselines with two levels of sensitivity. The a priori calibration
process puts all points on the same flux density scale (via
Equation (8)), and the resulting data variations can thus be
attributed to source structure, no longer dominated by
sensitivity differences between baselines.

6.1.3. Single-dish Error Budget

The SEFD error budget, assuming nominal pointing and
focus, is dominated by the measurement uncertainty for the
DPFU (see Table 3). Depending on the source elevation, the
uncertainty contribution for the elevation gain may also be non-
trivial (particularly for the LMT) and adds in quadrature to the
DPFU error to give the SEFD error budget. The gain curve
error budget is obtained from the propagation of errors on the
polynomial fit parameters in Equation (7), and is also itself
elevation-dependent. We assume that the uncertainty in *Tsys is
negligible as it is the variable measured closest to the individual
VLBI scans and the accuracy of the chopper method is well
studied (see Section 6.1.5, Kutner 1978; Mangum 2002). The
measurement uncertainties associated with pointing or focus
errors are not folded into these error budget estimates as they
are not easily quantifiable a priori.
For all single-dish stations, the DPFU uncertainty is

estimated by the standard deviation in IA from a distribution
of planet measurements added in quadrature to the uncertainty
in the model brightness temperatures assumed for the planets.
The scatter in planet measurements reflects changes in
telescope performance with varying weather conditions, and
thus it encompasses possible fluctuations in the mean value
assumed during the observing window. An exception is the
JCMT during daytime observing, where IA has a time
dependence parametrized by a fit of a Gaussian component
dip as a function of local time, described in a technical memo
(Issaoun et al. 2018). The uncertainty in I ( )tA is determined
through the propagation of the errors on the fit parameters via
least-squares fitting. Individual uncertainty contributions of the
various components and the resulting percentage SEFD error
budget for each EHT station during the 2017 April observa-
tions are listed in Table 3. Site-by-site derivations of flux
density calibration uncertainties during the EHT 2017 cam-
paign are given in Janssen et al. (2019b).

6.1.4. Phased-array Calibration

The phased arrays combine the total collecting area of all their
dishes into one virtual telescope. This depends on precise phase
alignment of the signals, with an accuracy that is captured by the

Figure 9. Example of a gain curve fit to single-dish normalized flux density
measurements of calibrators at the SMT (Issaoun et al. 2017b).
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This is encapsulated into the system-equivalent flux density (SEFD) at each site, which is the (measured) noise power 
in units of flux density from an unpolarized astrophysical source (above the atmosphere)

The SEFD is calibrated separately from the data using first principles, known bright calibrators (planets), and 
noise sources of known temperature placed directly in front of receiving elements, and is taken “a priori”

EHTC 2019 ApJL 875 (Paper III), Issaoun+ 2017-CE-02

For a heterogeneous array such as the EHT, SEFD can range by orders of magnitude ~102 to ~105 Jy
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Closure relationships

At mm-frequencies, phase transfer from nearby calibration targets is very difficult or impossible 
so we have essentially no a priori information about station phase

2

hole “shadow" at the center of the radio galaxy M87 (Event
Horizon Telescope Collaboration et al. 2019a,b,c,d,e,f).

At the heart of the VLBI technique is the correlation of
the raw station data using either dedicated hardware or soft-
ware. The correlation is manifest as an interference fringe
that changes in an expected way as the Earth rotates. This
is a simple but computationally expensive process that re-
quires good, but nevertheless approximate, models in order
to measure the interferometric fringe. Some post-correlation
processing is then required to detect and analyze the fringes
to obtain scientifically useful results.

The VLBI correlator estimates the complex correlation for
signals x1 and x2 between pairs of antennas,

r12 =
hx1x⇤2i

⌘Q
p

hx1x⇤1ihx2x⇤2i
=

ei✓1 e-i✓2 V12
p

SEFD1 ⇥SEFD2
. (1)

In this expression, ⌘Q is a correction factor of ⇠0.88 account-
ing for the introduction of quantization noise during 2-bit
digitization and V (⇠1 Jy for bright continuum sources) is the
correlated flux density that varies by baseline. The system-
equivalent flux density (SEFD ⇠ 104 Jy, see Section 3.1) re-
flects the original analog system noise ⌘Qhxx⇤i in effective
flux units of an astronomical source above the atmosphere,
and the ei✓ are station phase terms corresponding to resid-
ual geometric, atmospheric, and instrumental phase suffered
by the signal before it is recorded. We adopt the convention
of Rogers et al. (1974) where positive delay (and unwrapped
phase) corresponds to the signal arriving at station 2 after sta-
tion 1.

The primary residual systematics after correlation are
small errors in delay and delay rate, which are related to the
first-order variation of the baseline phase, � = Arg[r], of the
complex correlation between two sites in time and frequency
(t,⌫):

�� =
@�

@⌫
�⌫ + @�

@t
�t. (2)

Since phase error � = 2⇡⌫⌧ , the delay and delay rate are given
by (Thompson et al. 2017, A12.28, A12.22)

⌧ =
1

2⇡

@�

@⌫
⌧̇ =

1
2⇡⌫

@�

@t
. (3)

For linear phase drift, the coherence has a sinc profile

1
��

Z ��/2

-��/2
d� cos� =

sin(��/2)
��/2

, (4)

as a function of accumulated phase drift, ��, so that maxi-
mum coherence occurs at the fringe solution where data are
compensated for fringe phase rotation and the accumulated
�� ! 0. First-order fringe searches vary the two parameters,
delay and delay rate, and search for maximum coherence in
excess correlated signal power over the full bandwidth and
up to the length of a scan. The original signals are highly
noise dominated (|r| . 10-4), and generally at least the first-
order fringe correction must be applied in order to coherently

average a sufficient number of samples and produce a level
of correlated flux above the statistical (thermal) noise.

The EHT and GMVA are composed of heterogeneous col-
lections of individual stations with varying sensitivities and
characteristics, and they target high observing frequencies
over wide bandwidths. For both VLBI networks, nonlinear
phase systematics beyond the first-order fringe solution are
important. These include phase variations over the observing
band due to small variations in path delay versus frequency
prior to digitization, as well as stochastic phase fluctuations
in time due to achromatic path variations from atmospheric
turbulence. The instrumental phase bandpass is typically
constant over long timescales and can be solved using bright
calibrator sources. Atmospheric phase is more difficult, as
it is continuously varying and must be solved on-source. At
millimeter wavelengths, the atmospheric phase can have a
decoherence timescale of seconds, and compensating for it
requires that the source be detectable on a baseline to within
just some fraction of the decoherence time. The need to
be able to measure and compensate for the atmosphere on-
source at rapid timescales has been a primary driver of the
wide recording bandwidths targeted by the EHT.

In Section 2 which follows, we introduce overall structure
and algorithms behind the iterative phase calibration applied
during the EHT-HOPS pipeline. In Section 3, we describe a
suite of post-processing tools that perform absolute flux cal-
ibration and polarization gain ratio calibration, enabling the
formation of calibrated Stokes I visibility coefficients in a
standard UVFITS file format. Section 4 describes the overall
EHT-HOPS computing software organization and workflow.
The EHT-HOPS pipeline is tested on a representative 3.5 mm
GMVA+ALMA data set in Section 5, and the output of the
pipeline is compared against a classical reduction pathway
for low-frequency VLBI in terms of fringe detection, con-
sistency of measured phase and amplitude, and similarity of
derived images on blazar NRAO 530.

2. EHT-HOPS PIPELINE
The current Haystack Observatory post-processing Sys-

tem4 (HOPS) was born from the efforts of Alan Rogers in
the late 1970s with a program called FRNGE, which was
written in FORTRAN and designed to be efficient on an
HP-21MX (later renamed HP-1000) minicomputer (Rogers
1970; Rogers et al. 1974). With improvements in hardware
and software, a rewrite and augmentation of the tool set were
launched in the early 1990s by Colin Lonsdale, Roger Cap-
pallo, and Cris Niell as driven by the needs of the of the
geodetic community and of a move to higher frequencies in
astronomical VLBI. The basic algorithms were adopted from
FRNGE, but there was a complete rewrite of the code into
(K&R) C and substantial revisions of the input/output, con-
trol and file structures, and graphical and summary analysis
tools, resulting in the framework of the current HOPS sys-
tem. This was followed by a substantial effort in the early

4 https://www.haystack.mit.edu/tech/vlbi/hops.html

However there are N(N−1)/2 baseline measurements of phase, yet only (N−1) unknown 
station phases, so the measurements do capture structural phase information about the source

This information is captured by the “closure phases”

closure phase

1

23

δ1

δ2δ3

insensitive to relative 
phase of each antenna:
N-1 degrees of freedom 
removed from baselines
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The correlation coefficients measured by the interferometer relies on finite averages to estimate expectation value

What are the limits from the source?

ALMA antennas are equipped with dual-polarization, side-
band-separating receivers with four IF outputs (Section 3.1).
The total bandwidth that can be transported back from each
ALMA antenna is 16 GHz, thus resulting in a maximum IF
bandwidth of 4 GHz per output. The sky frequencies for both
the lower- and upper-sideband must overlap perfectly from
station to station, which fixes both the local oscillator (LO)
frequency and IF frequency ranges at each observatory (Tilanus
et al. 2013). Table 4 shows the frequency configurations of the
EHT in both atmospheric transmission windows around 230
and 345 GHz.

The main considerations for selecting the chosen LO
frequencies are (Marrone et al. 2014) as follows.

1. The tuning range of the receivers at participating
facilities.

2. Atmospheric transmission.
3. The avoidance of Galactic 12CO: O _ 230.3–230.8 GHz

and O _ 345.4–346.1 GHz within the VLBI observing
bands.

4. To a lesser degree: avoidance of Galactic 13CO: O _
220.2–220.6 GHz and O _ 330.3–330.9 GHz within the
VLBI observing bands.

5. Access to 12CO spectral lines in an extended tuning range
of the receivers above 9 GHz when observing in the
1.3 mm band, or below 4 GHz when observing in the
0.87 mm band.

6. Access to maser lines within the VLBI band, e.g., the SiO
maser line at 215.596 GHz (v J1, 5 4� � l ).

7. Performance of existing quarter-wave plates used to
observe circular polarization.

For ALMA’s 230 GHz band, the IF band previously was
restricted to a lower limit of 5 GHz (now 4.5 GHz), which
resulted in a common IF range across the telescopes of
5–9 GHz, whereas the common IF range for the 345 GHz band
is 4–8 GHz.

3. Instrumentation

A schematic of the EHT’s VLBI signal chain at single-dish
telescopes is shown in Figure 4. The front end is typically a
dual-polarization sideband-separating receiver in the 1.3 mm or
0.87 mm bands, often the product of a joint development
project between the EHT and the telescope facility. These
efforts are described in the Appendix. A hydrogen maser
provides a frequency reference standard of sufficient stability
for mm-VLBI (Section 3.2), and is used to phase lock all
analog systems as well as digital sampling clocks throughout
the signal chain.
Dedicated block downconverters (BDCs; Section 3.3) mix IF

bands coming from the receivers to baseband. Each 4 GHz
wide IF band is split and downconverted into two 2 GHz wide
sections at baseband. High-bandwidth digital backends (DBEs;
Section 3.4) are used to sample two 2 GHz baseband signals

Figure 3. Expected EHT Fourier space coverage on SgrA*. The left panel shows both detections (red) and non-detections (gray) of SgrA* in the 2013 EHT
campaign. Participating telescopes were: APEX, CARMA, JCMT, SMA, and SMT. The dashed circles mark baselines with a fringe spacing equal to 50 μas
(approximately the diameter of the shadow of the SMBH candidate SgrA*) and 25 μas. The two remaining panels show simulated EHT observations in 2020:
(1) without ALMA and (2) with ALMA. Specifications to determine baseline detections shown are those detailed in Section 2.2. These figures emphasize the benefit of
including ALMA in the array: its high sensitivity allows detections for SgrA* on all observed baselines. Because each EHT site requires at least one strong baseline to
identify an interferometric fringe and to correct for residual delays, rates, and phase wander, ALMA significantly extends the Fourier coverage and sensitivity even for
non-ALMA baselines. Coverage shown in the two right panels corresponds to an array including Chile (APEX, ALMA), Mexico (LMT), France (NOEMA), Spain
(PV), Hawaii (SMA, JCMT), Arizona (SMT), and South Pole (SPT). The corresponding baseline coverage of the 2017 observations is shown in Figure 11.

Table 4
EHT Frequency Configurations

230 GHz Band 1SB 230 GHz Band 2SB 345 GHz Band 2SB

Nominal Wavelength 1.3 mm 1.3 mm 0.87 mm
Lower-sideband Sky Freq. Range(GHz) unused 212.1–216.1 334.6–338.6
Upper-sideband Sky Freqs. Range(GHz) 226.1–230.1 226.1–230.1 346.6–350.6
Local Oscillator(GHz) 221.1 221.1 342.6
Intermediate FrequencyRange(GHz) station dependent 5–9 4–8
Recording Rate( Gbps) 32 64 64
Year of First Use 2017 2018 >2020
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EHTC 2019 ApJL 875 (Paper II) 

Interferometer sweeps through ~FOV/beam measurements in 24h
For EHT sources of ~few2 independent pixels, coherence length ~hours

A ~few pixels across a spatial dimension means >10% fractional 
bandwidth can be averaged without affecting independent measurements

Compact EHT sources implies intrinsic smoothness/stability 
in time and frequency for the model visibility
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What about variability in gain parameters?

2

hole “shadow" at the center of the radio galaxy M87 (Event
Horizon Telescope Collaboration et al. 2019a,b,c,d,e,f).

At the heart of the VLBI technique is the correlation of
the raw station data using either dedicated hardware or soft-
ware. The correlation is manifest as an interference fringe
that changes in an expected way as the Earth rotates. This
is a simple but computationally expensive process that re-
quires good, but nevertheless approximate, models in order
to measure the interferometric fringe. Some post-correlation
processing is then required to detect and analyze the fringes
to obtain scientifically useful results.

The VLBI correlator estimates the complex correlation for
signals x1 and x2 between pairs of antennas,

r12 =
hx1x⇤2i

⌘Q
p

hx1x⇤1ihx2x⇤2i
=

ei✓1 e-i✓2 V12
p

SEFD1 ⇥SEFD2
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In this expression, ⌘Q is a correction factor of ⇠0.88 account-
ing for the introduction of quantization noise during 2-bit
digitization and V (⇠1 Jy for bright continuum sources) is the
correlated flux density that varies by baseline. The system-
equivalent flux density (SEFD ⇠ 104 Jy, see Section 3.1) re-
flects the original analog system noise ⌘Qhxx⇤i in effective
flux units of an astronomical source above the atmosphere,
and the ei✓ are station phase terms corresponding to resid-
ual geometric, atmospheric, and instrumental phase suffered
by the signal before it is recorded. We adopt the convention
of Rogers et al. (1974) where positive delay (and unwrapped
phase) corresponds to the signal arriving at station 2 after sta-
tion 1.

The primary residual systematics after correlation are
small errors in delay and delay rate, which are related to the
first-order variation of the baseline phase, � = Arg[r], of the
complex correlation between two sites in time and frequency
(t,⌫):

�� =
@�

@⌫
�⌫ + @�

@t
�t. (2)

Since phase error � = 2⇡⌫⌧ , the delay and delay rate are given
by (Thompson et al. 2017, A12.28, A12.22)
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For linear phase drift, the coherence has a sinc profile
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as a function of accumulated phase drift, ��, so that maxi-
mum coherence occurs at the fringe solution where data are
compensated for fringe phase rotation and the accumulated
�� ! 0. First-order fringe searches vary the two parameters,
delay and delay rate, and search for maximum coherence in
excess correlated signal power over the full bandwidth and
up to the length of a scan. The original signals are highly
noise dominated (|r| . 10-4), and generally at least the first-
order fringe correction must be applied in order to coherently

average a sufficient number of samples and produce a level
of correlated flux above the statistical (thermal) noise.

The EHT and GMVA are composed of heterogeneous col-
lections of individual stations with varying sensitivities and
characteristics, and they target high observing frequencies
over wide bandwidths. For both VLBI networks, nonlinear
phase systematics beyond the first-order fringe solution are
important. These include phase variations over the observing
band due to small variations in path delay versus frequency
prior to digitization, as well as stochastic phase fluctuations
in time due to achromatic path variations from atmospheric
turbulence. The instrumental phase bandpass is typically
constant over long timescales and can be solved using bright
calibrator sources. Atmospheric phase is more difficult, as
it is continuously varying and must be solved on-source. At
millimeter wavelengths, the atmospheric phase can have a
decoherence timescale of seconds, and compensating for it
requires that the source be detectable on a baseline to within
just some fraction of the decoherence time. The need to
be able to measure and compensate for the atmosphere on-
source at rapid timescales has been a primary driver of the
wide recording bandwidths targeted by the EHT.

In Section 2 which follows, we introduce overall structure
and algorithms behind the iterative phase calibration applied
during the EHT-HOPS pipeline. In Section 3, we describe a
suite of post-processing tools that perform absolute flux cal-
ibration and polarization gain ratio calibration, enabling the
formation of calibrated Stokes I visibility coefficients in a
standard UVFITS file format. Section 4 describes the overall
EHT-HOPS computing software organization and workflow.
The EHT-HOPS pipeline is tested on a representative 3.5 mm
GMVA+ALMA data set in Section 5, and the output of the
pipeline is compared against a classical reduction pathway
for low-frequency VLBI in terms of fringe detection, con-
sistency of measured phase and amplitude, and similarity of
derived images on blazar NRAO 530.

2. EHT-HOPS PIPELINE
The current Haystack Observatory post-processing Sys-

tem4 (HOPS) was born from the efforts of Alan Rogers in
the late 1970s with a program called FRNGE, which was
written in FORTRAN and designed to be efficient on an
HP-21MX (later renamed HP-1000) minicomputer (Rogers
1970; Rogers et al. 1974). With improvements in hardware
and software, a rewrite and augmentation of the tool set were
launched in the early 1990s by Colin Lonsdale, Roger Cap-
pallo, and Cris Niell as driven by the needs of the of the
geodetic community and of a move to higher frequencies in
astronomical VLBI. The basic algorithms were adopted from
FRNGE, but there was a complete rewrite of the code into
(K&R) C and substantial revisions of the input/output, con-
trol and file structures, and graphical and summary analysis
tools, resulting in the framework of the current HOPS sys-
tem. This was followed by a substantial effort in the early

4 https://www.haystack.mit.edu/tech/vlbi/hops.html
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pipeline is compared against a classical reduction pathway
for low-frequency VLBI in terms of fringe detection, con-
sistency of measured phase and amplitude, and similarity of
derived images on blazar NRAO 530.

2. EHT-HOPS PIPELINE
The current Haystack Observatory post-processing Sys-

tem4 (HOPS) was born from the efforts of Alan Rogers in
the late 1970s with a program called FRNGE, which was
written in FORTRAN and designed to be efficient on an
HP-21MX (later renamed HP-1000) minicomputer (Rogers
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geodetic community and of a move to higher frequencies in
astronomical VLBI. The basic algorithms were adopted from
FRNGE, but there was a complete rewrite of the code into
(K&R) C and substantial revisions of the input/output, con-
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4 https://www.haystack.mit.edu/tech/vlbi/hops.html
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Fringe fitting
Fringe fitting involves self-calibration of residual clock errors to extract and average correlation coefficient

At high frequencies, there are linear and non-linear residuals in phase vs frequency and phase vs time

𝚫ɸ12(t, f, pp) = ɸ0   (a priori phase corrections)
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Fringe fitting: phase bandpass
First correction is generally an instrumental phase bandpass because

It is stable across the experiment and can be solved on an ensemble of bright calibrators

𝚫ɸ12(t, f, pp) = ɸ0 + ɸ2-1(f)
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Fringe fitting: delay

After removing non-linear phase vs frequency, we can extract a clean linear fit to delay for this scan

𝚫ɸ12(t, f, pp) = ɸ0 + ɸ2-1(f) + 2π(f-fref)τ,pp
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Fringe fitting: delay-rate

As well as delay-rate, although this is poorly defined in the presence of rapid atmospheric fluctuations

𝚫ɸ12(t, f, pp) = ɸ0 + ɸ2-1(f) + 2π(f-fref)τ,pp + 2πf(t-tref)τpp
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Fringe-fitting: atmospheric phase

𝚫ɸ12(t, f, pp) = ɸ0 + ɸ2-1(f) + 2π(f-fref)τ,pp + 2πf(t-tref)τpp + ɸ2-1(t)

And finally we can estimate and correct for atmospheric phase, here referencing to the first antenna

now we can average over the 
entire scan and bandwidth
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Phase calibration pipeline

Due to the large number of free parameters involved
in correcting for atmospheric phase, a leave-out-one cross-
estimation approach is adopted for this step to avoid self-
tuning. For each baseline, a smooth phase model is estimated
by stacking RCP and LCP data over 31 (of 32) spectral IFs.
The estimated phase from the 31-IF average is used to correct
the remaining IF, and the process cycles through IFs to cover
the full band. In this way, phase corrections are never estimated
from the same data to which they are applied, which avoids
introducing false coherence from self-tuning to random thermal
noise and introducing a positive bias to amplitudes. The
effective solution interval for the phase model depends on S/N,
and is chosen per baseline to balance anticipated atmospheric
phase drift with thermal noise in the estimate. Additional
a priori corrections for small residual clock frequency offsets
after correlation (Appendix) are made here as well.

During a final reduction with fourfit (close fringe solution),
rather than fitting for unconstrained delays and delay-rates per
baseline and polarization product, a single set of station-based
delays and delay-rates is fixed corresponding to a global fringe
solution. These are derived from a least-squares solution (as
proposed by Alef & Porcas 1986) to relative delays and delay-
rates from confident baseline detections with S/N> 7, and
stations that remain unconstrained by this process are removed
from the data set. No interpolation of these fringe solutions is
performed across sources and scans; instead, precise closure of
delay and delay-rate from strong baseline detections is required
to report any measurement on a weak baseline. Correlation
coefficients on baselines with no detectable signal are still
calculated (Figure 11, where S/N<few), but only when the
relative clock model is constrained through other baseline
detections.

The resulting complex visibility data are converted to
UVFITS format, and amplitude calibration is done in the

EHT Analysis Toolkit’s (eat)109 post-processing framework,
shared by all pipelines and described in Section 6. For the
HOPS pipeline, the calibration of complex polarization gain
ratios is performed in a post-processing stage rather than during
fourfit. Deterministic field rotation from parallactic angle
and receiver mount type is corrected as a complex polarization-
dependent a priori gain factor, and a smoothly varying
polynomial model is fit over many sources and used to correct
residual RCP−LCP phase drift for each station. Details for all
steps can be found in Blackburn et al. (2019).
The EHT-HOPS pipeline was additionally used for the reduction

of observations of Sgr A* and calibrators at 86GHz, with the
Global Millimeter VLBI Array110 (GMVA) joined by ALMA.
Despite the magnitude difference in bandwidth, a similar
reduction to EHT data was performed on the GMVA data set.
ALMA baselines were used to estimate stable instrumental
phase and delay corrections. Baselines to either ALMA or the
Green Bank Telescope (GBT) were used, due to their high
S/N, to correct for stochastic atmospheric phase fluctuations on
timescales of a few seconds. The performance of the pipeline
on the GMVA data is described in Blackburn et al. (2019)
while scientific results from the data set are validated against
historical observations in Issaoun et al. (2019).

5.2. CASA Pipeline

The CASA (McMullin et al. 2007) package was developed
by NRAO to process data acquired with the JVLA and ALMA
connected-element interferometers and in recent years has
become the standard software for the calibration and analysis of
radio-interferometric data. A newly developed fringe-fitting
task fringefit (I. van Bemmel et al. 2019, in preparation) has
added the necessary delay and delay-rate calibration capabil-
ities for VLBI. The modular, general-purpose rPICARD VLBI
data reduction pipeline (Janssen et al. 2019a) is used for the
calibration of EHT data. This section describes the incremental
rPICARD calibration steps for EHT data, summarized in
Figure 6.
The importfitsidi CASA task is used to import the

FITS-IDI correlator output into CASA. Additionally, a
digital correction factor for the 2-bit recorder sampling is
applied when the data are loaded. Bad data are flagged based
on text files compiled from station logs and known sources of
radio frequency interference in stations’ signal chains with the
flagdata task before performing the incremental calibration
procedures. The accor task is used to scale the auto-
correlations to unity and adjust the cross-correlations accord-
ingly, correcting for incorrect sampler settings from the data
recording stage. This is done for each 58MHz spectral IF
individually, thereby correcting for a coarse bandpass at each
station. This amplitude bandpass is refined by dividing the data
by the auto-correlations at the 0.5 MHz channel resolution.
The phase calibration is done with the fringefit task,

which solves for station-based residual post-correlation phases,
delays, and rates with respect to a chosen reference station
(Schwab & Cotton 1983). Unlike the HOPS pipeline, where
field rotation angles are corrected a posteriori, rPICARD
applies field rotation angle gain solutions on-the-fly, i.e.,
before each phase calibration correction. The most sensitive
station is picked as reference in each scan. Eventually, all

Figure 5. Stages of the EHT-HOPS pipeline and post-processing steps, as
described in the text. The first five stages, shown in the left box, are iterations
of HOPS fringe fitter fourfit. Here, a comprehensive phase calibration model
is gradually built for the data. At the end of the five fourfit stages, the
correlation coefficients are evaluated at a single global (station-based) set of
relative delays and delay-rates. The data are then converted to UVFITS format,
and a remaining suite of post-processing tools provide amplitude calibration
and time-and-polarization-dependent phase calibration.

109 http://github.com/sao-eht/eat
110 https://www3.mpifr-bonn.mpg.de/div/vlbi/globalmm
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fringe solutions are re-referenced with the CASA rerefant
task to a common station for each observing track to ensure
phase continuity across scans.

Phases are first calibrated for the high S/N calibrator
sources, which are used to correct for instrumental effects.
Optimal time solution intervals to calibrate atmospheric intra-
scan phase fluctuations (,sol) are determined automatically
based on the S/N of the data. The search is done for short
solution intervals, close to the coherence time, which still yield
detections on all possible baselines (Janssen et al. 2019a).
Typical solution intervals range from 2 to 30 s. Using these
solution intervals, phases and rates are calibrated to extend the
coherence time of the calibrator scans. This results in high S/N
scan-based fringe solutions per 58MHz spectral IF, which are
used to obtain calibration solutions for instrumental effects.
ALMA-induced phase offsets between spectral IFs are
corrected with the short ALMA–APEX baseline. All baselines
in the array are used by the global fringe fitter in the next step
to solve for residual instrumental phase and delay offsets for all
stations. After removing these instrumental data corruptions,
a final fringefit step solves for multi-band delays on the
(previously determined) solution intervals. A 60 s median
window filter is used to smooth the slowly varying multi-band
delays, which effectively removes potential outliers. After
fringe fitting, the phases are coherent in time and frequency,
and the bandpass task is used to solve for the frequency-
dependent phase gains within each 58MHz spectral IF for each
station, using the combined data of all calibrator sources.

After all instrumental effects are calibrated out, the optimal
fringe-fit solution intervals ,sol are determined for the weaker
science targets, and phases, delays, and rates are solved for in a
single fringefit step. The intra-scan fringe fritting on short
solution intervals flags low S/N segments where no fringes are
found to a specific station, e.g., when a station arrived late on
source. Finally, the exportuvfits task is used to export the
calibrated data from internal Measurement Set format to
UVFITS files, which are then flux-density and network-
calibrated in the common post-processing framework.
Janssen et al. (2019a) demonstrate the rPICARD calibration

capabilities in a close comparison with a traditional AIPS-based
calibration using 43 GHz VLBA data of M87. The resultant
image of the jet and counter-jet, which reveals a complex
collimation profile, is in good agreement with earlier results
from the literature (e.g., Walker et al. 2018). The rPICARD
pipeline was further used for the generation of synthetic EHT
data (Paper IV), where known input delay and phase offsets
were recovered as a ground-truth validation.

5.3. AIPS Pipeline

AIPS (Greisen 2003) is the most widely used software
package for VLBI data reduction and processing at frequencies
at or below ∼86 GHz. It is commonly used in the VLBI
community and was built to process low-S/N data from fairly
homogeneous centimeter-wave observatories at low recording
bandwidths. The EHT, however, falls in a different category:
its high recording bandwidth and heterogeneous array produce
data with a wide range of S/N, often dominated by systematic
effects instead of thermal noise. These properties required the
development of a custom pipeline based on AIPS, deviating
from standard fringe-fitting procedures for lower frequency
data processing as outlined in e.g., the AIPS Cookbook.111

The custom AIPS pipeline is an automated Python-based
script using functions implemented in the eat package. It
makes use of ParselTongue (Kettenis et al. 2006), which
provides a platform to manipulate AIPS tasks and data outside
of the AIPS interface. The pipeline is summarized in Figure 7
and shows individual tasks used for calibration. A suite of
diagnostic plots, using tasks VPLOT and POSSM, are also
generated at each calibration step within the pipeline.
The loading of EHT data into AIPS, during which digital

corrections for 2-bit quantization efficiency are applied,
requires a concatenation of several packaged FITS-IDI files
and a careful handling of the JCMT, which observes with a
slightly shifted IF setup of the band (Section 4). The pipeline
reduces each band (low and high) in separate runs. Data
inspection and flagging of spurs in the frequency domain from
accumulated scalar bandpass tables (generated with BPASS)
and dropouts or amplitude jumps in the time domain are done
interactively with the AIPS tasks BPEDT and EDITA. The flags
are saved in output flag tables to use in non-interactive reruns
of the pipeline. Standard amplitude normalization steps are
performed with the AIPS task ACSCL. The field rotation angle
corrections are performed with an EHT-specific receiver mount
correction script (ehtutil.ehtpang, modifying the
antenna table from the DiFX alt-az default to the proper
receiver mounts of each station) using the AIPS task CLCOR
before fringe fitting.

Figure 6. EHT data processing stages of rPICARD. Instrumental amplitude
calibration effects are described in the top-left box. Phases for the calibrator
sources are corrected first to solve for instrumental effects (second box) and
science targets are phase-calibrated after the instrumental effects have been
solved (third box). Finally, post-processing steps are done outside of CASA for
amplitude calibration (fourth box).

111 http://www.aips.nrao.edu/cook.html
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For mm-VLBI such as EHT, custom pipelines are required due to uniqueness of data and systematics
Purpose of steps is to fit as simple a model as possible, using as much S/N as available, and maintain closure (station-based gains)

“EHT-HOPS” (Blackburn+ 2019) CASA “rPicard” (Janssen+ 2019) AIPS (EHTC 2019 ApJL 875 (Paper III))

The fringe-fitting steps follow a similar framework to the
HOPS pipeline but use KRING,112 a station-based fringe fitter
that outperforms the standard FRING in terms of computational
efficiency for large data sets, while maintaining an equivalent
accuracy. The first step of the fringe search, commonly known
as instrumental phase calibration, consists of solving for delay
and phase offsets and fringe-rates using the full scan coherence
and full 2 GHz bandwidth (combining spectral IFs). The
second step solves for delay and phase offset residuals per
individual spectral IF, again using the full scan coherence. The
third step uses a fixed solution interval of 2 s to solve for fast
phase rotations in time across the full bandwidth (combining
IFs). The final stage is solving for scan-based residual delays
and phases per individual spectral IF.

The AIPS pipeline particularly relies on ALMA being
present to accurately solve for short interval solutions, as it uses
ALMA as the reference station for the initial baseline-based
FFT within KRING. Without ALMA, or in certain cases of a
weak baseline to ALMA, KRING is unable to accumulate
enough S/N in a single spectral IF or within a two-second
segment to constrain a fringe solution. After applying all
calibration steps, the data are frequency-averaged and exported
in UVFITS format. A priori and network calibration are

performed outside of AIPS in the common post-processing
framework.

6. Flux Density Calibration

The flux density calibration for the EHT is done in two steps
and is a common post-processing procedure for all three phase
calibration pipelines, as it involves very little handling of the
data themselves. In Section 6.1, we describe the a priori
calibration process to calibrate visibility amplitudes to a
common flux density scale across the array. In Section 6.2,
we present the network calibration process, where we use array
redundancy to absolutely calibrate stations with an intra-site
companion.

6.1. A Priori Amplitude Calibration

A priori amplitude calibration serves to calibrate visibility
amplitudes from correlation coefficients to flux density
measurements, as in Equation (2). As the normalized correla-
tion coefficients are in units of noise power, it is necessary to
account for telescope sensitivities to convert to a uniform flux
density scale across the array. The SEFD of a radio telescope is
the total system noise represented in units of equivalent
incident flux density above the atmosphere. It can be written as

*

I
�

q
( )

T
SEFD

DPFU
, 3sys

el

using the three measurable parameters:

1. *Tsys: the effective system noise temperature describes the
total noise characterization of the system corrected for
atmospheric attenuation (Equations (4) and (5)),

2. DPFU: the degrees per flux density unit provides the
conversion factor (K/Jy) from a temperature scale to a
flux density scale, correcting for the aperture efficiency
(Equation (6)),

3. ηel: the gain curve is a modeled elevation dependence of
the telescope’s aperture efficiency (Equation (7)), fac-
tored out of the DPFU to track gain variation as the
telescope moves across the sky.

The EHT is a heterogeneous array with telescopes of various
sensitivities (ranging nearly three orders of magnitude, see
Figure 8), operation schemes, and designs. A clear under-
standing of each station’s metadata measurement and delivery
is required for an accurate calibration of the measured
visibilities. We determine the SEFDs of the individual stations
and their uncertainties under idealized conditions, assuming
adequate pointing and focus (see Sections 6.1.1, 6.1.3,
and 6.1.4). Further losses and uncertainty in the SEFDs,
particularly those induced by focus or pointing errors, are
difficult to quantify using available metadata, but are
qualitatively explained in Section 6.1.5. A more quantitative
assessment of station behavior can be done via derived residual
station gains from self-calibration methods in imaging or model
fitting (Papers IV, VI).

6.1.1. Quantifying Station Performance

In order to determine the sensitivity of a single-dish station at
a given time, measurements of the effective system temper-
ature, the DPFU, and the gain curve are required. Here we

Figure 7. Stages of the AIPS fringe-fitting pipeline and post-processing steps.
The pipeline begins with direct data editing (interactively or via input
correction and flag tables) and amplitude normalization (first box). The phase
calibration process then follows via four steps with the AIPS fringe fitter
KRING to solve for phase and delay offsets and rates (second box). Finally,
post-processing steps are done outside of AIPS for amplitude calibration
(third box).

112 See AIPS MEMOS 101 and 107 for details;http://www.aips.nrao.edu/
aipsmemo.html.
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Some things that can go wrong

Too many free parameters for available S/N

Averaging over visibilities when gain is not stable

Leaving in bad data / Ignoring systematics

Introduce calibration noise
Overfit data: bias amplitude upward, bias phase toward model

Underutilize array constraints and gain priors

Introduce non-closing errors (averaged product of station gains may not factor)

Wrong calibration solutions
Systematic errors drive solution under the assumption of Gaussian thermal noise only
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Thermal errors: origin

VLBI equations
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hE1E
⇤
2 i = S⌫

hE1E
⇤
2 i = e�2⇡u·�S⌫

~u u = d/�

~u u = d?/�

⌧g

�

�� = �2⇡u · �
v(t, f) = g(t, f)E(t, f) hv1v⇤2i = g1g

⇤
2 hE1E

⇤
2 i✓

vL
vR

◆
=

✓
gL 0
0 gR

◆✓
EL

ER

◆ ✓
hv1Lv⇤2Li hv1Rv⇤2Li
hv1Rv⇤2Li hv1Rv⇤2Ri

◆
=

✓
g1L 0
0 g1R

◆✓
hE1LE

⇤
2Li hE1RE

⇤
2Li

hE1RE
⇤
2Li hE1RE

⇤
2Ri

◆✓
g⇤2L 0
0 g⇤2R

◆

v = Ja Jb · · ·JzE hv1v
†
2i = J1a J1b · · ·J1z hE1E

†
2iJ

†
2z · · ·J

†
2b J

†
2a

�2
r,ij =

1

2�t�⌫
(1)

(2)

hE1E
⇤
2 i =

ZZ
e�2⇡u·� I⌫(�) d⌦ (3)

= V(u) (4)

rij =
hviv⇤j i

⌘Q
q
hviv⇤i ihvjv⇤j i

rij < 10�4

1

Thermal (statistical) error due to contribution from independent system noise at each site. For a 
normalized correlation coefficient and white noise, this follows from the central limit theorem,

Thermal noise is Gaussian and independent in real, imaginary components, and thus scales very simply 
under vector average and scaling by any visibility amplitude factors. Still, it is always good to check!

4 Ortiz-León et al.

Figure 3. Fractional amplitude loss as a function of averaging
time for a scan on 3C279 taken in the first epoch. We estimated
this fraction for each baseline and took the maximum values to
show in the plot.

ships (discussed below) were not a↵ected by coherence
losses, we then utilized 10-second coherent averages. For
this segment of time the losses can be considered neg-
ligible in all of our data. After this coherent averaging
in time and across the full bandwidth, these phase-only
calibrated data were exported as FITS files for further
analysis outside of AIPS.

4. ANALYSIS

VLBI visibilities were analyzed via two standard path-
ways: the first analysis used only “closure” quanti-
ties, which provide immunity to station-based calibration
errors, and the second analysis used “self-calibration,”
which attempts to simultaneously solve for source struc-
ture and complex, time-dependent station gains.

4.1. Fitting an Elliptical Gaussian Using Closure

Amplitudes

For a closed triangle of interferometric baselines, the
phase of the bispectrum (the directed product V12V23V31
of the three complex visibilities Vij around the triangle) is
immune to any station-based phase errors. This quantity
is known as a “closure phase.” Likewise, closure ampli-
tudes, such as |(V12V34)/(V13V24)|, can be constructed
for any quadrangle of sites and provide immunity to
station-based gain amplitude errors (Thompson et al.
2007). We constructed closure amplitudes and phases
from the phase-only calibrated data for each 10-second
time segment.
Measured closure phases from both days are consistent

with a zero-mean Gaussian distribution (see Figure 4).
We then fit the distribution of closure phases to calcu-
late a single coe�cient that converts AIPS weights wi to
thermal noise �i / 1/

p
wi for each measurement. Be-

cause the atmospheric coherence time at � = 3.5 mm is
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Figure 4. Probability density function (PDF) of the standardized
closure phases on all triangles with baselines shorter than 250 M�.
The solid line shows a fitted Gaussian, representing zero intrinsic
closure phase and non-zero measurements entirely due to thermal
noise. We use this Gaussian fit to estimate the scaling factor re-
lating each “weight” reported by AIPS for a complex visibility to
the thermal noise.

only tens of seconds and coherent averages must be done
over even shorter timescales to preserve the closure re-
lationships discussed below, most of our measurements
have only moderate signal-to-noise. For example, the
median signal-to-noise in our two observing epochs was
8.3 and 7.2, respectively, for all detections, but ⇠10%
of detections have SNR < 3. Both closure amplitudes
and phases have markedly non-Gaussian errors in this
regime, and closure amplitudes su↵er a noise bias. For
example, for a closure amplitude constructed from four
visibilities that each have an SNR of 3, the average will
be biased upward by 30%, and estimates of the closure
amplitude uncertainty using high-SNR properties will be
incorrect. For this reason, we derived the conversion
between AIPS weights and thermal noise using closure
phases with SNR > 3, and we used Monte Carlo simula-
tions to estimate the bias and uncertainties in our closure
quantities.
Even after averaging our closure phases over each

epoch, they are still close to zero, consistent with an ellip-
tical Gaussian structure. Consequently, for both epochs
BD183C and BD183D, we performed a least-squares fit
of elliptical Gaussian source models to the closure am-
plitudes (see Figure 5). To avoid errors that were sig-
nificantly non-Gaussian and the associated bias, we only
used closure amplitudes constructed from visibilities that
had SNR > 3 in their 10-second coherent average for
these fits.
The best-fit solutions have a reduced �2 of 1.50 for

BD183C and 1.25 for BD183D. These values are greater
than unity at high significance, so to determine whether
the excess can be entirely accounted for by the non-
Gaussian closure amplitude errors, we generated syn-
thetic data sets for each epoch using the best-fit ellip-
tical Gaussian model for the source. We sampled the
model on each baseline for which there was a detection,
and added the expected amount of thermal noise to each
sample. Finally, we calculated closure amplitudes for
these synthetic data and used them to find the best-fit
elliptical Gaussian. This procedure successfully repro-
duced the input model within the derived uncertainties

“Closure-phase” differencing, e.g. Ortiz+ 2016
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Figure 2: Left: histograms of relative di↵erence between the reported uncertainty and uncertainty measured via the moment matching
estimator for 5399 data ensembles shared in all 3 EHT pipelines. Information about the median (med) and median absolute deviation
(mad) is provided in the legend. Right: same, but for 2038 ensembles with S/N < 50.

For the SR1 data set, consisting of 8 observations (unique source, unique night), the closure scaling factor , indicating the
consistency of the reported noise with the one measured from closure phases variation, was found to be 1.03 ± 0.02 for the
HOPS data set and 0.97 ± 0.10 for the CASA data set. We briefly summarize the properties of the two presented methods in
Table 1.

Table 1: Comparison of properties of the two thermal noise estimation methods.

property moment matching closure phases scaling

best performance in (moderately) low S/N in high S/N
robust against gain errors no yes
requires correct weights no yes
ensemble for estimation individual ensemble full observation

2 Bias in closure phases

2.1 Introduction

At the fringe fitting stage of VLBI data calibration in CASA and AIPS, a source model is assumed during visibility phase
calibration using the Schwab-Cotton global fringe fitting method [9]. The phase calibration for each solution interval is
station-based, and does not a↵ect the closure phase computed for a triangle formed from three connected baselines. However,
the individual baseline phases themselves can exhibit a bias toward the source model used. A closure phase formed from
the averaged baseline visibility phases taken over many intervals can then develop a bias toward the source structure model,
which is zero for the commonly adopted point-source calibration model. The bias is present exclusively in case of visibility
averaging over multiple fringe-fitting intervals prior to forming closure phases. The e↵ect is more severe if shorter intervals
are used for the fringe fitting solution interval [6], as this increases the number of free calibration parameters versus the total
constraining S/N in the data. Hence, it is expected that AIPS should display a largest bias (short 2s intervals), the bias should
be less severe for CASA data (varying solution interval depending on S/N, but typically several seconds or more) and HOPS
data should not display a bias, since the point source model is not utilized for the HOPS baseline-based fringe search. While
the SR1 data set consists of 10 s averaged visibilities, we consider scan-averaged data in this test. Since that implies reduced
thermal uncertainties, the presence of this calibration/averaging related bias should be seen more clearly. The aim of these
tests is to determine the importance of this bias and its dependence on closure phase magnitude.

5

Amplitude scatter, e.g. Wielgus+ 2019-CE-02
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Figure 1. Caption

Figure 2. Distribution of 106 simulated closure phases versus Gaus-
sian approximation from the high signal-to-noise theoretical limit
(dashed lines). For each closure phase, all three baseline visibilities
are drawn from a single complex normal distribution with amplitude
⇢BL and unity variance in each complex component. The individual
baseline phase errors are estimated from their measured amplitude.
The derived closure phase significance is used to generate the dis-
tribution, and scaled to a nominal width.

Under the approximation that baseline observables are Gaus-
sian random variables, the joint distribution of T closure
phases  i jk, for example, is characterized by a multivariate

Gaussian distribution,

G( ; ̂,⌃ ) =
1

(2⇡)T/2|⌃ |1/2 exp


-1
2

( -  ̂)>⌃-1
 ( -  ̂)

�

(37)
with model values  ̂ = { ̂i jk} and covariance matrix ⌃ .

For a collection of all baseline phases measured between
four sites, � = {�12,�13,�14,�23,�24,�34} (Figure 4), the
first three closure phases are,

 123 = �12 +�23 -�13

 124 = �12 +�24 -�14

 134 = �13 +�34 -�14

(38)

The final closure phase is redundant with the other three,

 234 = �23 +�34 -�24 =  123 + 134 - 124 (39)

We can represent the generation of closure phases as a lin-
ear operator (closure phase design matrix  ) applied to the
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Thermal errors: non-Gaussianity
Thermal error is Gaussian in complex 

visibility, not necessarily in amplitude & phase18
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Figure 12. Two thousand random realizations of the measured com-
plex correlation coefficient r/�r given intrinsic signal-to-noise ⇢̆ =
2 and 5. MJ: I think we should drop this figure.

amplitudes is positively biased with respect to ⇢̆, and we find
E[⇢] = 2.272 for ⇢̆ = 2 and E[⇢] = 5.101 for ⇢̆ = 5, which is
why debiasing may be important for incoherent data averag-
ing and for estimating ⇢̆. When working with closure ampli-
tudes, we need to utilize the reciprocal amplitudes y = 1/⇢,
distributed according to

p(y|⇢̆) =
1
y3 exp

✓
-1/y

2 + ⇢̆2

2

◆
I0

✓
⇢̆

y

◆
. (A5)

Approximation with normal distribution of mean m
2 =

(⇢̆2 + 1) and standard deviation ⇢̆-2 can be derived, Figure 13
bottom left. The probability distribution exhibits heavy tails
in low signal-to-noise, related to inversion of potentially ar-
bitrarily small amplitude. The fact that amplitude is always
positive is one indication that log-amplitude might be a more
natural space in which to characterize the distribution. An-
other benefit of using log-amplitude is that amplitude and
squared-amplitude (a more natural quantity for incoherent
sums of Gaussian components) are simply related. Loga-
rithms of the correlation amplitude z = log⇢ (log denotes a
natural logarithm) obey a following log-Rice distribution

p(z|⇢̆) = exp
✓

2z - ⇢̆2

2
- exp2z

2

◆
I0 (⇢̆expz) . (A6)

The distributions of the logarithm of amplitude for different
⇢ are shown in Figure 13, bottom right. Moments of the log-
Rice distribution are treatable analytically, and the distribu-
tion can be approximated with a normal distribution of mean
m = 0.5log(⇢̆2 + 1) and standard deviation 1/⇢̆. A more gen-
eral treatment of incoherent averages of N amplitude mea-
surements can be given.

A.2. Log amplitude ensemble distribution

Begin with a set of N independent complex visibility mea-
surements vi where each complex component has thermal
noise of 1. Thus vi = ⇢̆i +ni where ⇢̆i is some expected signal-
to-noise ratio for each measurement and ni is a Gaussian
complex random variable with � = 1 for each component.
The sum-squared amplitudes follow a �2 distribution with
2N degrees of freedom. This will be a non-central chi-sq
distribution if it includes a non-zero expected source contri-
bution.

x =
X

i

|vi|
2

f (x) = �2
2N,� (A7)

where � is the non-centrality parameter,

� =
X

i

|⇢̆i|
2 (A8)

The expectation value of logx is,

E
⇥
logx

⇤
= gN(�) (A9)

and g(·) is the function (Lapidoth & Moser 2003),
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(A10)
where � ⇡ 0.577 is the Euler-Mascheroni constant and Ei
is the exponential integral. We have introduced � for the
case where amplitudes are uniformly scaled away from � = 1.
From this the expectation value E

⇥
log

p
x
⇤

= E
⇥

logx
⇤
/2 is

easy to calculate, for example in the case of a single Rice-
distributed complex visibility (where “measured" ⇢ = |v|)

E
⇥
log⇢

⇤
= log ⇢̆- Ei


- ⇢̆

2

2

�
. (A11)

The log-closure amplitude c is formed from linear combi-
nation of four log-amplitudes A,B,C,D,

c = A + B -C - D (A12)
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Figure 1. Distribution of phase error and amplitude for measured
correlation coefficient given intrinsic amplitudes ⇢ = 2 and 5, and
� = 1 Gaussian noise contribution in each complex component. Dot-
ted lines represent a Gaussian approximation to the full distribution
with (µ� = 0, �� = 1/⇢ rad) and (µamp =

p
⇢2 + 1, �amp = 1).

Figure 2. Distribution of 106 simulated closure phases versus Gaus-
sian approximation from the high signal-to-noise theoretical limit
(dashed lines). For each closure phase, all three baseline visibilities
are drawn from a single complex normal distribution with amplitude
⇢BL and unity variance in each complex component. The individual
baseline phase errors are estimated from their measured amplitude.
The derived closure phase significance is used to generate the dis-
tribution, and scaled to a nominal width.

4. CLOSURE QUANTITY COVARIANCE

choice of closure quantities that minimizes covariance

what is covariance if they all have the same SNR

Closure phases and log-closure amplitudes are formed
from sums and differences of shared baseline quantities, so
that the closure quantities do not have independent noise.
Under the approximation that baseline observables are Gaus-
sian random variables, the joint distribution of k closure
quantities is characterized by a multivariate Gaussian distri-

Figure 3. Distribution of 106 simulated closure amplitudes versus
Gaussian approximation from both the high signal-to-noise theoret-
ical limit, as well as an empirical measure of mean value (bias) and
standard deviation. Baseline amplitudes A, B, C, D are drawn from
a Rice distribution with non-central amplitude 1 and ⇢A,⇢B,⇢C,⇢D

= (5, 5, 8, 8). There are large tails in the standard closure amplitude
ratio due to amplitudes in the denominator that approach zero. The
tail is mitigated somewhat by placing the lower signal-to-noise mea-
surements in the numerator. However using log closure amplitude
provides a better behaved distribution overall.
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Figure 4. Network of four sites. There are 6 baselines, 3 non-
redundant closure phases, and 2 non-redundant closure amplitudes.

bution,

G(c;µ,⌃) =
1

(2⇡)k/2|⌃|1/2 exp


-1
2

(c -µ)T⌃-1(c -µ)
�

(33)

with expectation values µ and covariance matrix ⌃.
In a network of baseline phases A,B,C,D,E,F between

four sites (figure 4), the first three closure phases are,

c1 = A + F + D

c2 = A + B - E

c3 = E +C + D

(34)

common estimators of phase error will 
give large reduced chi-square at low S/N
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Systematic errors: closing vs non-closing

EHTC 2019 ApJL 875 (Paper IV)any site. This image demonstrates that closure quantities are
sufficient to recover the diameter and asymmetry of the ring in
the fiducial images.

8.3. Tests of the Observed Time Variability

Our fiducial images of M87 (Figure 11) over the four
observing days show an evolution in the ring structure between

the two observations on April 5, 6 and the two observations on
April 10, 11 (Figure 33). However, the data used to reconstruct
these images do not identically sample the (u, v) plane
(Figure 1). To verify whether or not the observed evolution in
the fiducial M87 images is intrinsic, it is necessary to confirm
that the evolution is not an artifact imprinted on the
reconstructions by the changing (u, v) coverage sampled by
the EHT on the different observing days.
To this end, we constructed reduced data sets from the April

6 and 11 data with “overlapping” baseline coverage. Specifi-
cally, we flag all (u, v) points along a particular baseline track
that are not common to the April 6 and 11 observations (i.e., we
flag points on April 6 with no measurement on April 11 within
0.01 Gλ, and vice versa). The number of (10 s averaged)
visibilities is reduced from ∼18,000 to ∼5,000 in the
overlapping data set. We then used the eht-imaging script
with the identified fiducial parameters (Section 6.2.2) to
reconstruct images on both days with these subsampled
data sets.
Figure 23 compares the reconstructions made from these

overlapping (u, v) data to our original images from the full data
sets. The results show no significant variation in the
morphology due to the changing (u, v) coverage. In particular,
the enhanced southwest brightness in the April11 image

Figure 20. Representative images of 3C 279 from the April11 EHT observations produced using DIFMAP, eht-imaging, and SMILI. To simplify visual
comparisons and display the images at similar resolutions, the images are restored with circular Gaussian beams of 20, 17.1, and 18.6 μas FWHM, respectively.

Figure 21. Multiplicative residual station gains for the SMT (left) and LMT
(right) derived from the 3C 279 images (Figure 20) and fiducial M87 images
(Figure 14) from the three imaging pipelines on April 5. Gains for the fiducial
images of M87 are shown in red; those for 3C 279 are shown in blue. The
particularly large excursions on the LMT M87 gains are likely due to poor
pointing. Note that LMT could not observe 3C 279 before 2h30 UTC.

Table 6
Median, 25th, and 75th Percentile Residual Gain Corrections for M87 and 3C 279 on April5

Station Fiducial M87 Median Gain 3C 279 Median Gain A Priori Budget (%)

DIFMAP eht-imaging SMILI DIFMAP eht-imaging SMILI

ALMA 0.97 0.03
0.02

�
� 0.97 0.01

0.02
�
� 0.98 0.01

0.01
�
� 0.99 0.09

0.02
�
� 1.11 0.02

0.04
�
� 0.97 0.01

0.03
�
� 5.0

APEX 1.05 0.02
0.04

�
� 1.02 0.01

0.02
�
� 1.01 0.01

0.01
�
� 0.99 0.00

0.01
�
� 0.90 0.00

0.01
�
� 1.05 0.02

0.01
�
� 5.5

SMT 1.13 0.06
0.01

�
� 1.02 0.01

0.04
�
� 0.99 0.01

0.02
�
� 1.06 0.02

0.01
�
� 0.97 0.02

0.01
�
� 1.04 0.01

0.02
�
� 3.5

JCMT 1.00 0.00
0.02

�
� 1.00 0.00

0.00
�
� 1.00 0.00

0.00
�
� 1.00 0.00

0.01
�
� 1.02 0.01

0.02
�
� 1.00 0.01

0.00
�
� 7.0

LMT 1.46 0.21
0.76

�
� 1.55 0.19

0.93
�
� 1.47 0.19

0.91
�
� 1.08 0.04

0.16
�
� 1.21 0.11

0.13
�
� 1.35 0.05

0.27
�
� 11.0

SMA 1.00 0.01
0.02

�
� 1.00 0.00

0.01
�
� 1.00 0.00

0.00
�
� 1.01 0.01

0.01
�
� 1.04 0.00

0.03
�
� 0.99 0.01

0.00
�
� 7.5

PV 1.14 0.04
0.04

�
� 0.96 0.07

0.02
�
� 0.98 0.07

0.02
�
� 1.33 0.04

0.12
�
� 1.14 0.05

0.04
�
� 0.94 0.02

0.05
�
� 5.0

Note. These gains were derived via self-calibration (with no systematic error included). The error budget on apriori calibration is derived in Paper III. Note that the
median gain corrections for ALMA, APEX, SMA, and JCMT can reasonably be much smaller than this error budget because network calibration has already been
applied. The variation in the recovered gains among pipelines is partly due to the large uncertainty in the total flux density (between 8 and 10 Jy) and total compact
flux density of 3C 279.

25
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Possibly reflected in high/low band comparison, pipeline comparison, etc

Errors in gain calibration:   Vij = gi gj* rij + nij

Closing errors (manageable)

If uncertain, best left for self-calibration (do not “inflate” data errors)

Non-thermal baseline errors:   Vij = gi gj* rij + nij + eij

8.4.4. Trivial Closure Quantities

The intra-site baselines ALMA–APEX and JCMT–SMA
provide the EHT array with multiple “trivial” closure triangles
and quadrangles. Ideally, these trivial closure phases and trivial
log closure amplitudes should be equal to zero, but this is not
precisely true in the presence of polarimetric leakage.
Furthermore, the small but finite length of intra-site baselines
leads to measurements that are susceptible to contamination
from large-scale structure, breaking the assumptions of atrivial
closure quantity. This particular aspect is aconcern for M87
and its large-scale jet. The estimated characteristic magnitude
of systematic errors in trivial closure phases is given in Table 7.
While for 3C 279 the magnitude of about 1° can be fully
explained by polarimetric leakage, M87 systematics are
inconsistent with limits given by Equation (26), suggesting
the presence of an additional source of error. We illustrate the
systematic-error fitting procedure in Figure 19, in which
3C 279 trivial closure phase distribution is shown, before and
after adding the systematics, and is estimated to be about 1°
consistently for all processing pipelines.

8.4.5. Systematic Error Budget

Based on values reported in Table 7, we conclude that, for
asingle band, systematic errors of 3C 279 measurements are
dominated by polarimetric leakage and its contribution can be
approximated with characteristic values of about 1°.5 for
closure phases and 0.03 for log closure amplitudes. For M87,
leakage is not nearly as important, and other subtle effects like
polarimetric calibration uncertainties may influence the total
systematic error budget. Suggested systematics are 2° for
closure phases and 0.04 for log closure amplitudes. For each
test of closure phases and log closure amplitudes summarized
in Table 7, we show related distributions in Figure 20. Errors in
Figure 20 were inflated according to the above recommenda-
tion for systematic errors. Astandard (zero mean, unit
variance) normal distribution is shown with adashed line.
The match between the empirical distributions and the normal
distribution indicates that the addition of the systematic
uncertainties allows for the approximate capture of the total
data uncertainty. Under the assumption of independent baseline
errors, the closure uncertainties given in this section can be
translated to 2% non-closing systematic uncertainties in
visibility amplitudes and 1° of non-closing systematic uncer-
tainties in visibility phases.

8.5. Inter-pipeline Consistency

Direct comparisons between corresponding data products
delivered by separate pipelines allow us to quantify the degree
of confidence that we may have in their properties and their
dependence on specific choices in calibration procedure.
Figure 21 (top) shows the distribution of visibility amplitude
differences betwen the reduction pipelines, in units of their
thermal uncertainty. Thermal errors represent aparticular scale
of interest; however, visibilities reduced by separate pipelines
are not independent variables and share the same thermal noise
realization. Another useful quantity is the relative absolute
amplitude difference. As indicated in Table 8, the median
relative difference between the most consistent pair of
pipelines, HOPS–CASA, is 3.8%, well within the budget of
apriori flux density calibration (Section 6). While for 3C 279
all three pairs represent asimilar level of consistency, for M87
the HOPS–CASA pair is by far the most consistent one, as
indicated in Table 8. This result is consistent with known
difficulties in the processing of low S/N data with the AIPS
pipeline, originating from the lack of S/N to constrain a fringe
solution in the two-second intervals used for fringe fitting
(Section 5.3). Distributions of differences between amplitude
data products are unbiased; however, significant tails are
present, with 10% of the M87 visibility amplitude data
inconsistent by more than 22.8% for the most consistent pair,
HOPS–CASA.
In Figure 22 we show HOPS–CASA and HOPS–AIPS

scatter plots of correlation coefficient amplitude ∣ ∣rij . The three
pipelines demonstrate increasing levels of consistency at high
S/N. AIPS shows a tendency to occasionally overestimate
amplitude at low S/N, sometimes by a large factor, indicating a
degree of over-tuning and acceptance of possible false fringes.
Contrary to visibility amplitudes, the distributions of closure

phase and closure amplitude differences, shown in Figure 21,
generally exhibit a spread at or below the level of thermal

Table 7
Systematic Errors in SR1 Data Set

M87 3C 279

Test HOPS CASA AIPS HOPS CASA AIPS

RR−LL closure phases (deg) <1.0(0.2) <1.0(0.2) <1.0(0.2) 1.9(1.1) 1.9(1.1) 2.1(1.2)
RR−LL log closure amplitudes (%) <2.0(0.2) <3.0(0.3) <2.0(0.2) 3.1(1.0) 3.6(1.2) 3.3(1.0)
Stokes I closure phase low/high (deg) 1.4(0.4) 2.5(0.6) 2.6(0.6) 2.2(1.5) 2.3(1.5) 2.0(1.3)
Stokes I log closure amplitude low/high (%) 5.6(0.8) L <10.0(1.3) 4.5(1.8) 5.4(2.3) 4.8(1.8)
Stokes I trivial closure phases (deg) 3.7(1.1) 2.6(0.8) 3.2(1.0) 1.2(1.9) 1.0(1.5) 1.0(1.4)
Stokes I trivial log closure amplitudes (%) 3.6(0.4) 5.6(0.7) 7.7(0.9) 3.8(2.0) 3.8(1.9) 3.3(1.6)

Note.Characteristic magnitudes of systematic errors, estimated using the subset of data shared by all three pipelines. Scan-averaged single-band data. Numbers in
parentheses represent characteristic systematic errors in units of thermal noise.

Figure 19. Normalized distributions of trivial closure phases for 3C 279 in
three data reduction pipelines, before (blue) and after (red) accounting for the
residual systematic uncertainties. Numbers indicate the fraction of 3σ outliers.
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Difficult to estimate, possibly reflected in trivial closure phases and amplitudes
polarization leakage, band-pass non-overlap, coherence issue, etc

Commonly modeled as additional Gaussian RV: 

estimates σrep before incoherent averaging, to account for the
small bias in this pipeline discussed in Section 8.2. For all three
pipelines, the coherence of the phase-corrected data is
significantly better than that of data with no atmospheric phase
correction (the gray curve in Figure 18; see also Figure 2 of
Paper II), with over 90% of the calibrated data experiencing an
amplitude loss of under 10%. These results demonstrate that
coherent averaging over scans is admissible for the SR1 data
set, particularly in case of the HOPS data products.

8.4. Intra-pipeline Validation

In this subsection we perform internal data consistency tests
for each pipeline, in order to estimate the magnitude of
systematic non-closing errors, e.g., related to the uncalibrated
polarimetric leakage. For that purpose, we inspect closure
phases and log closure amplitudes derived from the SR1 data
set and evaluate consistency between (1) RR and LL
components, (2) low- and high-frequency bands, and (3) trivial
closure quantities. For each test, we derive amagnitude of
residual errors, in excess to the reported thermal uncertainties.
These values are then used to characterize the magnitude of
non-closing errors in the data set, utilized in the downstream
analysis.

8.4.1. Quantifying Residual Errors

We evaluate the characteristic magnitude of systematic
errors in the SR1 data set based on tests of distributions of
closure quantities. In this approach we rely on thefollowing
modified median absolute deviation statistic:

�( ) (∣ ∣) ( )Y Ymad 1.4826 med , 220

where “med” denotes median, the subscript zero indicates that
the raw distribution moment is estimated, and the normalization
factor of 1.4826 scales the result so that it acts as arobust
estimator of standard deviation for anormally distributed
random variable Y with zero mean. We assume total
uncertainties σ associated with closure quantities to be well
approximated by

T T� � ( )s , 232
th
2 2

such that the total uncertainty consists of the known apriori
thermal component σth and a constant systematic non-closing
error s, of unknown magnitude, added in quadrature. We then
solve for the characteristic value of s that enforces

T T
�

�
�⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )X X

s
mad mad 1, 240 0
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where σ is thetotal uncertainty associated with X. As an
example, for RR–LL consistency of closure phases we have

Z Z
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s

,
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We exclude low S/N data (S/N < 7), for which the normal
distribution approximation does not hold well.

8.4.2. RR–LL Consistency

Consistency of closure quantities derived from RR and LL
visibilities, matched for the same scan, baseline, and band, are
expected to be dominated by effects related to polarimetric
leakage, which remains uncalibrated in SR1 data. Assuming
that some amount of leaked polarized signal mixes randomly
into the parallel-hand visibilities, the degree of systematic error
can be crudely approximated as

E x �� �∣ ∣∣ ∣ ∣ ∣ ( )n D m n m2 0.14 , 26leak

where the number of baselines n is 3 for closure phases and 4
for closure amplitudes, �∣ ∣D 0.1 is a leakage D-term
magnitude, and �∣ ∣m is atypical fractional interferometric
baseline polarization (i.e., fractional linearly polarized corre-
lated flux density relative to total intensity); see Johnson et al.
(2015). If acharacteristic ��∣ ∣m 0.2 is assumed, these upper
bounds translate under Equation (26) to <2°.8 for the closure
phase systematic uncertainty and <5.7% for the closure
amplitude uncertainty. The results of the SR1 errors estimation
by normalizing mad0 are summarized in Table 7. The estimated
errors are consistent with the simple upper limit given by
Equation (26) and roughly consistent between all data
reduction pipelines. While for the high S/N source 3C 279
the leakage related errors may dominate over the thermal
errors, they remain strongly subthermal for M87.

8.4.3. Frequency Bands Consistency

Comparisons between low-/high-frequency bands may
reveal the presence of band-specific systematics, including
frequency-dependent polarimetric leakage. Apart from those,
source spatial structure and spectral index both may add
asmall contribution. The estimated magnitudes of systematic
errors found for closure phases and log closure amplitudes are
given in Table 7. For all pipelines, the magnitude of
characteristic closure phase inconsistency was found to be
about 0.5 times the thermal uncertainty for M87 and about
1.5 times the thermal uncertainty for 3C 279 (scan-average,
single-band/polarization). For 3C 279 systematic uncertainties
strongly dominate over the thermal scatter, and this should be
taken into account before the direct averaging of frequency
bands.

Figure 18. Joint M87 and 3C 279 cumulative histograms of amplitude ratios
between coherent averaging for entire scans (Ascan), and coherent averaging for
2 s before incoherent averaging over scans (A2 s). The gray histogram shows
the results from the HOPS pipeline with no atmospheric phase correction
applied. For each pipeline, the fraction of data with coherence above 90% is
indicated.
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but be careful! most likely not independent across data points (do not average..)

s ~ 1-2%

Non-closing errors (try to minimize)

EHTC 2019 ApJL 875 (Paper III), Wielgus+ 2019
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Covariant errors

The noise properties of the correlation coefficients from the correlator are very simple:

Gaussian noise in real and imaginary components, independent across all data products

This is ideal for model fitting, calculating likelihoods, goodness-of-fit, etc..  messing with the data just makes it worse

Simple example — Gain error:   Vij = gi gj* rij + nij

If Gaussian, can be captured by covariance matrix (e.g. for log amplitude)

CLOSURE STATISTICS IN RADIO INTERFEROMETRIC DATA 23

Number of stations (N)
Matrix Shape N = 2 N = 3

⌃✓ N ⇥N

 
�2
✓,1 0
0 �2

✓,2

! 0

B@
�2
✓,1 0 0
0 �2

✓,2 0
0 0 �2

✓,3

1

CA

S� B⇥B

⇣
�2

12

⌘
0

B@
�2

12 0 0
0 �2

13 0
0 0 �2

23

1

CA

� B⇥N

⇣
1 -1

⌘
0

B@
1 -1 0
1 0 -1
0 1 -1

1

CA

⌃� B⇥B

⇣
�2

12 +�2
✓,1 +�2

✓,2

⌘
0

B@
�2

12 +�2
✓,1 +�2

✓,2 �2
✓,1 -�2

✓,2

�2
✓,1 �2

13 +�2
✓,1 +�2

✓,3 �2
✓,3

-�2
✓,2 �2

✓,3 �2
23 +�2

✓,2 +�2
✓,3

1

CA

Table 3. Visibility phase design and covariance matrices for 2- and 3-element arrays, along with matrices relevant for their construction. Here,
B =

�
N

2

�
is the number of baselines.
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Table 4. Log visibility amplitude design and covariance matrices for 2- and 3-station arrays, along with matrices relevant for their construction.
Here, B =

�
N

2

�
is the number of baselines.

where �2
i j

is the variance in the log visibility amplitude mea-
surement ai j. There are three symmetries encoded in the
above expression. The first of these is a cycling invariance,

ci jk` = c`k ji, (B43)

indicating that, as for the closure phases, the log closure am-
plitude value doesn’t change with choice of starting baseline.
The second symmetry is a direction invariance,

ci jk` = ck`i j, (B44)

showing that, unlike for closure phases, the log closure am-
plitude value doesn’t change when the sequence of baselines
is reversed. The third symmetry is a sign flip imparted on the

value of the log closure amplitude upon swapping the numer-
ator and denominator,

ci jk` = -cik j`. (B45)

These symmetries are illustrated in Figure 17.
We construct a minimal design matrix C that maps from

the log visibility amplitude space to the log closure amplitude
space13,

c = Ca, (B46)

13 The log closure amplitude design matrix is equivalent to the “amplitude
closure operator” of Lannes (1990a) and the “alternate amplitude compila-
tion operator” of Lannes (1991).

10

– see Table 2). However, while the covariance for residual
closure quantities is due to thermal error on shared baselines,
the baseline thermal noise is independent for visibility quan-
tities in the weak source limit, and the covariance is due to
systematic error in model gain over shared stations. A visi-
bility measurement Vi j contains contributions from both the
source and from the station gains,

Vi j = �i�
⇤
j
ri j. (26)

The multiplicative complex gains manifest as additive terms
modifying the visibility phases and log visibility amplitudes,

�i j = �̆i j +✓i -✓ j, (27a)
ai j = ăi j + g j + g j, (27b)

where the sign differences in the second gain terms arise be-
cause complex conjugation negates phases but leaves ampli-
tudes unchanged.

More generally, we can express the gain contributions to a
collection of visibility phases or log visibility amplitudes in
terms of design matrices � or A operating on the vector of
gain phases or log gain amplitudes,

�= �̆+�✓, (28a)
a = ă + Ag. (28b)

For example, the visibility phases measured on the baselines
in Figure 3 can be expressed using
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while the log visibility amplitudes can be similarly expressed
using
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This additivity makes it convenient to model the gain
phases and log gain amplitudes as Gaussian-distributed, so
that their variances simply add to those of the corresponding

visibility quantities. The baseline-based thermal variances
are uncorrelated across baselines, and in the absence of gains
would fully describe the visibility covariances via the diago-
nal matrices S� for visibility phases and Sa for log visibility
amplitudes (see Table 3 and Table 4 in Appendix B.1). The
station-based gain variances do drive covariances in the vis-
ibility residuals for baselines that share a station, with the
design matrices serving to map stations to baselines. The
covariance matrices are then constructed as the sum of the
baseline-based and station-based contributions,

⌃� = S� +�⌃✓�
>, (31a)

⌃a = Sa + A⌃gA>, (31b)

with the off-diagonal elements consisting of only station-
based terms while the diagonal elements combine both
station-based and baseline-based terms. The covariance ma-
trix corresponding to the visibility phases in Equation 29 is
given by
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(32)
while the covariance matrix corresponding to the log visibil-
ity amplitudes in Equation 30 is structurally identical except
for the off-diagonal term signs,

⌃a =
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(33)
The likelihood of observing a collection of B = N(N - 1)/2

residual visibility phases under a given source and gain
model is then,

L =
1p

(2⇡)Bdet(⌃�)
exp


-1

2
�̃>⌃-1

� �̃

�
, (34)

with a similar construction for log visibility amplitudes a.
The likelihood reduces to the simple case of statistically in-
dependent measured visibilties in the case of zero systematic
gain error (perfectly calibrated data).

Ignoring covariant errors often leads to confidence intervals which are too small!

It can be fun and instructive to use covariant errors, but make sure there is a very good reason 
before moving away from forward modeling into simple data products..

More complicated example — Closure phase
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Figure 3. Network of four sites. There are 6 baselines, 3 non-
redundant closure phases, and 2 non-redundant closure amplitudes.

by a multivariate Gaussian distribution,

G( ; ̂,⌃ ) =
1p

(2⇡)T det(⌃ )
exp


-1
2
 ̃>⌃-1

  ̃

�
, (10)

where residual closure phases  ̃ =  -  ̂ are taken about
model values  ̂ = { ̂i jk} and have covariance matrix ⌃ .
This corresponds to the likelihood of observing the residu-
als  ̃ under the model hypothesis.

For a collection of all baseline phases measured between
four sites, � = {�12,�13,�14,�23,�24,�34} (Figure 3), the
first three closure phases are,

 123 = �12 +�23 -�13

 124 = �12 +�24 -�14

 134 = �13 +�34 -�14

(11)

The final closure phase is redundant with the other three,

 234 = �23 +�34 -�24 =  123 + 134 - 124. (12)

We can represent the generation of closure phases as a lin-
ear operator (closure phase design matrix  ) applied to the
baseline phases:  = �,
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The covariance matrix for the non-redundant set is
⌃ = ⌃� >, where ⌃� is the covariance of the measured
baseline phases. In general ⌃� has a diagonal contribu-
tion from B independent baseline thermal noise contributions
S = diag(�2

00, . . . ,�
2
BB

), plus diagonal and off-diagonal contri-
butions from common systematic gain errors �2

✓,i. However
the common gain errors are ultimately eliminated through

the formation of closure quantities. Therefore,  ⌃� > =
 S > and,
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The cross terms of⌃ are non-zero and are based on the sign
of the shared baseline components of each closure phase.

For the same network of four sites, the first two log-closure
amplitudes are also based on sums and differences of log-
baseline amplitudes a = {a12,a13,a14,a23,a24,a34},

c1234 = a12 + a34 - a13 - a24

c1243 = a12 + a34 - a14 - a23
(15)

with a third closure amplitude that is redundant,

c1342 = a13 + a24 - a14 - a23. (16)

By using log amplitude, the redundancy in closure ampli-
tudes can be cast in terms of linear dependence, as is already
the case for closure phases. Covariance terms are formed ac-
cording to shared baselines, as was done for closure phases,
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(17)

The likelihood of observing a set of measured residual log
closure amplitudes c̃ = c- ĉ, given measurements c and model
hypothesis ĉ parallels Equation 3 for closure phases,

L =
1p

(2⇡)Qdet (⌃c)
exp


-1
2

c̃>⌃-1
c c̃
�
, (18)

The covariance matrix ⌃c must be formed from a non-
redundant set of Q  Qminimal closure quantities – otherwise
the matrix will be rank deficient and not invertible. Qminimal
is the largest non-redundant set that can be formed (and the
smallest set that captures all available degrees of freedom, to
be demonstrated in Section 3.2). The value c̃>⌃-1

c c̃ will then
follow a �2 distribution with Q degrees of freedom.

If we write the inverse covariance matrix as ⌃-1
c =

U>⌃-1
c,diagU, we see that matrix U transforms a non-redundant

set of Qminimal closure quantities into a space of combinations
of closure quantities with independent noise, and character-
ized by diagonal covariance matrix ⌃c,diag. When applied to
closure phases, this generates the so-called “kernel phases",
first noted by Martinache (2010). The closure basis formed
in this manner can be arbitrarily rotated by different choices
of U, but capture the same Qminimal degrees of freedom. Ad-
dition of redundant closure quantities to this set will be per-
fectly degenerate with linear combinations of the closure ba-
sis, and will not add additional information to the likelihood
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Figure 3. Network of four sites. There are 6 baselines, 3 non-
redundant closure phases, and 2 non-redundant closure amplitudes.

by a multivariate Gaussian distribution,

G( ; ̂,⌃ ) =
1p

(2⇡)T det(⌃ )
exp

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 ̃>⌃-1

  ̃
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, (10)

where residual closure phases  ̃ =  -  ̂ are taken about
model values  ̂ = { ̂i jk} and have covariance matrix ⌃ .
This corresponds to the likelihood of observing the residu-
als  ̃ under the model hypothesis.

For a collection of all baseline phases measured between
four sites, � = {�12,�13,�14,�23,�24,�34} (Figure 3), the
first three closure phases are,

 123 = �12 +�23 -�13

 124 = �12 +�24 -�14

 134 = �13 +�34 -�14

(11)

The final closure phase is redundant with the other three,

 234 = �23 +�34 -�24 =  123 + 134 - 124. (12)

We can represent the generation of closure phases as a lin-
ear operator (closure phase design matrix  ) applied to the
baseline phases:  = �,
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The covariance matrix for the non-redundant set is
⌃ = ⌃� >, where ⌃� is the covariance of the measured
baseline phases. In general ⌃� has a diagonal contribu-
tion from B independent baseline thermal noise contributions
S = diag(�2

00, . . . ,�
2
BB

), plus diagonal and off-diagonal contri-
butions from common systematic gain errors �2

✓,i. However
the common gain errors are ultimately eliminated through

the formation of closure quantities. Therefore,  ⌃� > =
 S > and,
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The cross terms of⌃ are non-zero and are based on the sign
of the shared baseline components of each closure phase.

For the same network of four sites, the first two log-closure
amplitudes are also based on sums and differences of log-
baseline amplitudes a = {a12,a13,a14,a23,a24,a34},

c1234 = a12 + a34 - a13 - a24

c1243 = a12 + a34 - a14 - a23
(15)

with a third closure amplitude that is redundant,

c1342 = a13 + a24 - a14 - a23. (16)

By using log amplitude, the redundancy in closure ampli-
tudes can be cast in terms of linear dependence, as is already
the case for closure phases. Covariance terms are formed ac-
cording to shared baselines, as was done for closure phases,

⌃c =
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(17)

The likelihood of observing a set of measured residual log
closure amplitudes c̃ = c- ĉ, given measurements c and model
hypothesis ĉ parallels Equation 3 for closure phases,

L =
1p

(2⇡)Qdet (⌃c)
exp


-1
2

c̃>⌃-1
c c̃
�
, (18)

The covariance matrix ⌃c must be formed from a non-
redundant set of Q  Qminimal closure quantities – otherwise
the matrix will be rank deficient and not invertible. Qminimal
is the largest non-redundant set that can be formed (and the
smallest set that captures all available degrees of freedom, to
be demonstrated in Section 3.2). The value c̃>⌃-1

c c̃ will then
follow a �2 distribution with Q degrees of freedom.

If we write the inverse covariance matrix as ⌃-1
c =

U>⌃-1
c,diagU, we see that matrix U transforms a non-redundant

set of Qminimal closure quantities into a space of combinations
of closure quantities with independent noise, and character-
ized by diagonal covariance matrix ⌃c,diag. When applied to
closure phases, this generates the so-called “kernel phases",
first noted by Martinache (2010). The closure basis formed
in this manner can be arbitrarily rotated by different choices
of U, but capture the same Qminimal degrees of freedom. Ad-
dition of redundant closure quantities to this set will be per-
fectly degenerate with linear combinations of the closure ba-
sis, and will not add additional information to the likelihood

covariance over 3 
closure phases

Blackburn, Pesce+ 2019
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Figure 6. Distribution of differences between calibrated RR and LL
measured delays and delay rates for all scans in the test data set with
S/N > 7, in units of expected total measurement error for the differ-
ence (taken in quadrature) from Equation 28 with 10 ps systematic
in delay and 0.25 fs/s in delay rate. The dotted line corresponds to a
standard normal distribution, expected if the constant delay model is
valid to within total Gaussian measurement uncertainties. 10 ps cor-
responds to a negligible 4⇥10-5 fractional coherence loss over the
256 MHz GMVA bandwidth, and the same for a residual 0.25 fs/s
delay rate error over 240 s of integration at 86 GHz (Equation 35).
The successful fitting of parallel-hand delay differences using a con-
stant model with zero statistically significant outliers indicates good
parallel-hand fringe solutions for both strong and weak sources, as
well as the stability of individual station instrumental delays through
the night. There are a small number (2%) of delay rate difference
outliers owing to the current limitation of ad hoc phasing to a sin-
gle reference station, meaning that some weaker isolated baselines
may not be able to be phase stabilized. A single station delay rate is
still enforced at the global fringe solution, but for the original delay
rate outliers there could be residual coherence loss under a full scan
average.

This is also the cumulative (survival) distribution of the max-
imum noise fringe power over N independent measurements.
A requirement that the false-positive rate be very low (much
less than the number of fits performed) sets a threshold
⇢thr ⇠ 7 above which detections are considered reliable.

Following Alef & Porcas (1986), we take the estimated
baseline and polarization-dependent delay and delay rate so-
lutions along with their errors from Equation 28, and then
perform a least-squares fit to station-based parameters. For
each scan, one delay and delay rate parameter is fit per an-
tenna that minimizes the squared error across all baseline
measurements. Measurements with ⇢0 < ⇢thr are assigned a
very large �sys so that they are effectively ignored in the pres-
ence of any other constraining data. The least-squares mini-
mization is performed in Scipy with an additional soft_l1
loss function L(z2) = 2 f 2 (

p
1 + z2/ f 2 - 1) applied at scale

f = 8� to mitigate the effects of outliers.
Specifically the least-squares approach solves for, e.g.,

model station delays ⌧i (and delay rates ⌧̇i) by minimizing
a chi-square error function

�2 =
X

i< j,k

L

"
(⌧i j,k - (⌧ j - ⌧i))2

�2
⌧ ,i j,k

#
(32)

where i < j loops over baselines, k indexes the four polar-
ization products, ⌧i j,k is the measured delay for each base-
line/polarization, ⌧i and ⌧ j are not dependent on polarization
owing to the previous step of delay calibration, �⌧ is total er-
ror as described in Equation 28, and L(z2) is the soft_l1
loss function specified earlier, as implemented in Scipy. The
best-fit station delays and delay rates are used to model base-
line fringe parameters

⌧i j = ⌧ j - ⌧i and ⌧̇i j = ⌧̇ j - ⌧̇i, (33)

which are then applied to the data for the global fringe solu-
tion (as zero-width search windows).

Expanding the fringe amplitude (Equation 4) to second or-
der about zero total phase drift,

|roff-fringe|

|rideal|
⇠ 1 - (��)2

24
(34)

so that a total phase drift of
p

0.24 rad corresponds to a 1%
amplitude loss. The expected amplitude loss at a fringe so-
lution based on a measurement of S/N ⇢ is 1/(2⇢2) each for
delay and rate errors and not including any noise bias. Propa-
gating fringe solutions with S/N of 7 and above will maintain
sub-1% amplitude loss.

In terms of errors on delay ⌧ and rate ⌧̇ directly, the ampli-
tude efficiency loss factor is

(2⇡⌧�⌫)2

24
(2⇡⌫⌧̇�t)2

24
. (35)

To maintain sub-1% amplitude loss for an observing band-
width of �⌫ = 2 GHz at observing frequency ⌫ = 220 GHz,

BH PIRE VLBI Data Series — Mar 11, 2020

Validation
After a lot of work, we want to make sure we have good data, and not bad data1

1https://www.bu.edu/blazars/songs/baddata.html

fringe solutions and measured correlation coefficients. These
fringe validation tests reflect the internal validation of each
pipeline, as opposed to the overall statistical validation and
cross-comparisons presented in the following subsections. In
addition to identifying issues with the fringe-fitting pipelines
themselves, consistent review of data products throughout
engineering data production played an important role in
characterizing upstream issues with the data and their
correlation.

Figures 15 and 16 show two fringe solution consistency tests
that are run as part of an automated test suite at each stage of
the HOPS pipeline (Section 5.1, with details in Blackburn et al.
2019). In Figure 16, as well as in subsequent plots of
distributions, the number of 3σ outliers and the size of the
tested sample for each source are provided. The dashed black
curve indicates astandard normal distribution with zero mean
and unity variance.

The HOPS pipeline baseline-based fringe solutions (prior to
the global enforcement of fringe closure) show smooth
evolution across each observing night and consistency across
four polarization products, which are independently fit. Delay
calibration assumes a constant RCP versus LCP delay offset
per night at each station, which is verified by the stability of
RR−LL delays to within thermal measurement error. Indepen-
dently measured delay-rates between polarizations are also
consistent to within thermal error. The lack of large-deviation
outliers in these fringe solution consistency tests is astrong
indication that there are no false fringes or corrupted
measurements above the detection threshold.

8.2. Thermal Error Consistency

Thermal error plays an essential role in the VLBI uncertain-
ties, both for the visibilities as well as for the derivative closure
quantities, for which uncertainties are simply propagated from
the visibility errors (Section 7.2). An accurate accounting of

thermal noise is essential for deriving faithful model-fitting
uncertainties, and for correct noise debiasing in the case of
incoherently averaged amplitudes (Rogers et al. 1995). Funda-
mentally, thermal uncertainty σth in the real and imaginary

Figure 14. Selection of M87 closure phases (left and middle columns) and log closure amplitudes (right column) as afunction of Greenwich Mean Sidereal Time
(GMST) for all four observed nights from the HOPS data set. Plotted uncertainties denote ±1σ ranges from thermal noise in the fully averaged data.

Figure 15. Measured residual relative delays for selected M87 baselines on
April 11, reported by the HOPS pipeline (Section 5.1) prior to explicit fringe
closure. The top panel shows smooth delay trends over the night for both
parallel hands, LL (dots) and RR (crosses). The bottom panel shows the sum of
the delays on this closed triangle, which is consistent with the expected value of
zero to within statistical errors. After fringe closure, RR and LL are set to the
same delay, and closure delay is zero by construction.
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Baseline delay closure

uncertainty, particularly for the HOPS–CASA pair. No
significant tails are present and 90% of the M87 data remain
consistent to within 0.9 standard deviations of the combined
thermal error budget for HOPS–CASA (Table 8). This

highlights the robustness of the closure quantities, independent
of station-based gains.
Examples of closure phases for all three pipelines, for some

of the triangles discussed in Section 7, are shown in Figure 23.
While there is abroad consistency, HOPS is unique in
reconstructing well-behaved closure phases on triangles
including the LMT–SMA baseline over the full range of
observations on April 11. To corroborate smooth trends and
large closure phase evolution for these data, in two panels in
Figure 23 we show data from aredundant JCMT triangle
(JCMT and SMA are collocated). The redundant JCMT
triangles show closure phases consistent with their SMA
counterparts, and are more consistently reconstructed across the
pipelines.
Abias toward zero closure phase can be seen when data are

averaged in time, particularly for the AIPS data set. This is due
to use of a point-source model during global fringe fitting on
short time intervals (2 s for AIPS). While the individual fringe
solution phases are station-based and separately close, the
process biases baseline phases to zero, and closure phases
generated from baseline phases averaged over multiple
segments will be biased toward the point-source model. This
bias is not expected in HOPS products, as HOPS fringe
solutions are baseline-based and assume no structure phase for
the coherent stacking of data from multiple baselines. The
median bias toward zero closure phase, estimated from
high S/N data at least 3σ away from zero, is about 1° for
AIPS and CASA with respect to unbiased HOPS. However,
while 90% of CASA data are biased by less than 4°.9, 10% of
AIPS data are biased by more than 8°.7. See Wielgus et al.
(2019) for an additional discussion of pipeline comparisons and
associated systematics.

Figure 20. Closure statistics distributions after inflating errors by the amount of
non-closing systematics recommended in Section 8.4.5. The plots follow the
same order as the tests reported in Table 7. The dashed lines represent
astandard normal distribution, and numbers show the fraction of 3σ outliers.
Combined errors are used where appropriate.

Figure 21. Consistency of visibility amplitudes (top), closure phases (middle),
and log closure amplitudes (bottom) between the three reduction pipelines.
Scan-averaged single-band Stokes I data are used.
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Closure quantity & pipeline cross-comparison

Self-consistency of baseline-
based delay solutions

Wielgus+ 2019
Blackburn, Chan+ 2019

EHTC 2019 ApJL 875 (Paper III)
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