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@> Van Cittert-Zernike theorem

e Relates spatial coherence of wavefront with brightness distribution of distant source

point source

<E1E§> =S5,
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@> Van Cittert-Zernike theorem

e Relates spatial coherence of wavefront with brightness distribution of distant source

\ point source
— (B Ey) =5,

\ shifted point source
\ x\ __ _—2mu-o
(E{E5) =e Sy
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@> Van Cittert-Zernike theorem

e Relates spatial coherence of wavefront with brightness distribution of distant source

point source

- <E1E§> =S5,

shifted point source

<E1E;> _ 6—27Tu-0'SV

extended source (integration over many point sources)

(EE3) = [ [ e 1(a) a0
= V(u)

“Visibility function”
| 2 encodes 2D complex spatial frequency
u=d/\ components of the sky brightness
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@> Van Cittert-Zernike theorem

e Relates spatial coherence of wavefront with brightness distribution of distant source

Time-shift antenna to form point source
lin r taken in th
baseline vector take | the <E1E§> — S,
plane of propagation
. . \ o
(Linearize about phase center) W\ Y
A shifted point source

<E1E§<> _ 6—27Tu-0'SV

N extended source (integration over many point sources)

N R4 <E1E§> — // e 2TUC L/(O') d)
= V(u)

“Visibility function”
| 2 encodes 2D complex spatial frequency
components of the sky brightness
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@> Ingredients of a VLBl measurement

WVe just need to measure E; and E; at various
locations in the plane of propagation, but..

|. Earth is round & moving

Irregular delays from troposphere/ionosphere
Different atmospheric and receiver noise
Various electronics and path delays
Independent and imperfect clocks at all stations

Post-digitization artifacts

N o U AW N

Unexpected data issues

In data reduction, we are asked to “hide” as many of

Reid & Honma these effects as possible (without ruining the data)
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@>: VLBI data and calibration pathway
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@> VLBI signa

\\\\\\ AN Wil sl !f//,&/;;////!’ "

Receiver

l

Downconverter

l

Digital Backend

Linear components (bandpass, delay, dispersion)

sky signal

VYV

W

2-bit sampled O O o

quantized power spectrum

source s(f) |—>m—> ‘ recorded x(f)‘ 1.OF unquantized |-
— linear term
0-8 ™ ™= = o ] .
system noise n(f)‘ ‘ quantization noise q(f)‘ | quant noise
3 0.6 - - total ]
S
o o
There are two important bandpass effects H(f) and G(f), 0.4 1
sometimes factored into a real (autocorr) and complex BP | -bit, white noise
0.2 i
Non-linear effects (delay-rate, atmospheric phase) must be
described using time-dependent factors 085 0.5 1.0 15 5.0
frequency

=== £ |TC 2019 ApJL 875 (Paper )
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@>: Gains, Polarization, and the Measurement Equation

Propagation of the astrophysical signal E through measurement v can be characterized by complex gain factors g
v(t, f) =gt [IE®R f)  (vv3) = 9193 (E1 Ey)
Signal and ensemble averages are parameterized in time and frequency, which requires that g is varying (relatively) slowly

For two orthogonal feeds of an antenna, this can be written in matrix form,

(UL) _ <9L 0 ) (EL) (<U1LU§L> <U1RU§L>) _ (QlL 0 ) (<E1LE§L> <E1RE§L>> (QSL 0 )
UR 0 g9r) \Lr (U1RV3L)  (V1RV3R) 0 gir) \(E1gE5L) (EypE3R) 0 93r
Tracking various physical propagation effects, as well as non-zero off-diagonal “D” terms (leakage across feeds, or
change of polarization basis), leads to Jones matrix formalism used by the Measurement Equation

v=J,Jp--JLLE  (v;v))=J1,T--- I (B,ED I ...30 3T, (see Smirnov 201 1)

Why so many? Physical model generally allows for least complexity. Note that matrices do not necessarily commute!

This is a very useful structure! One still must adopt good models for all the Jones matrices.. also track noise..
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https://ui.adsabs.harvard.edu/abs/2011A&A...527A.106S/abstract

@%} Correlation

Sky signal [PB]

1G+/ (0507 )(v;05)

MIT Haystack Observatory T4
Max Planck Institute for Radioastronomy
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€>: Correlation

Sky signal [PB]
Ee —(Qge * Eé
atmosphere
(0; 0 }k>
&‘ T = % *
& 1q+/ (v07) (0,05)

rij < 10™% s small

MIT Haystack Observatory T4 - average >108 samples for detection
Max Planck Institute for Radioastronomy
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@> Flux calibration (a priori)

The correlation coefficient is normalized by the system noise in the separate receiving systems

Relating this to physical units of correlated flux density requires a calibration of the noise power

<U7;U}k>
Fij = - - V.| = /SEFD; x SEFD; |r;]
77@\/<Uiv' ><vjvj> ! \/ T

This is encapsulated into the system-equivalent flux density (SEFD) at each site, which is the (measured) noise power
in units of flux density from an unpolarized astrophysical source (above the atmosphere)

The SEFD is calibrated separately from the data using first principles, known bright calibrators (planets), and
noise sources of known temperature placed directly in front of receiving elements, and is taken “a priori”

For a heterogeneous array such as the EHT, SEFD can range by orders of magnitude ~10% to ~10- Jy

EHTC 2019 Ap]L 875 (Paper lll), Issaoun+ 2017-CE-02
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Closure relationships

At mm-frequencies, phase transfer from nearby calibration targets is very difficult or impossible
so we have essentially no a priori information about station phase

<x1_x>2'<> ei91 e—i92 VIZ
Fi2 = — = =
no v/ (x,x7)(x,x3)  VSEFD; x SEFD,

However there are N(N—1)/2 baseline measurements of phase, yet only (N—1) unknown
station phases, so the measurements do capture structural phase information about the source

closure phase and amplitude DOF

1.0
- Closure phase

This information is captured by the “closure phases” closure amplitude

0.8 -

closure phase
0.6 -

0 insensitive to relative

bhase of each antenna: 0

N-1I degrees of freedom
removed from baselines

fraction of information recovered

0.2

03 < 02

OO 1 1 1 1 | 1
3 4 5 6 7 8 9 10
number of antennas
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@>: Time-frequency ensemble average: source constraints

The correlation coefficients measured by the interferometer relies on finite averages to estimate expectation value

<U1U>2k> = 195 <E1E§>

What are the limits from the source?

b5 = [[ e i
= V(u)

Interferometer sweeps through ~FOV/beam measurements in 24h
For EHT sources of ~few? independent pixels, coherence length ~hours

A ~few pixels across a spatial dimension means >10% fractional

10' - g S '(')' S '5' e 0 bandwidth can be averaged without affecting independent measurements

u (GA)
Compact EHT sources implies intrinsic smoothness/stability
EHTC 2019 ApJL 875 (Paper II) in time and frequency for the model visibility
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€>: Time-frequency ensemble average: phase systematics

VLBI signal

VLBI signal

VLBI signal

What about variability in gain parameters!?
(V1V3) = G195 (B E3)

effect of delay: phase shift increasing with frequency

LAV AVAVAVAVAVAY;

time

time

effect of delay-rate (doppler shift): phase shift increasing with time

time

First-order phase systematics

_ 09 0¢
A¢ = %AV_I_ EAZL

Delay Delay-rate (rate)

1 09 .1 09¢
27 Ov 7-_27w6’t

T

Large delays and rates taken out at
Correlator at high time-frequency resolution
using a priori Earth model (calc)

We only worry about residual clock errors

0.5s x 0.5 MHz dump time, bandwidth

— rates within ~2 ps/s (1.3 mm/s)
— delays within ~1| ps
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@> Fringe fitting

frequency

Fringe fitting involves self-calibration of residual clock errors to extract and average correlation coefficient

At high frequencies, there are linear and non-linear residuals in phase vs frequency and phase vs time

Ad2(t, 1, pp) = ¢po (a priori phase corrections)

/ IIIIIIIIII -
daEnnGEunaaSanEs
dEENNaEAnAENANnEE

time

delay

delay-rate
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Fringe fitting: phase bandpass

First correction is generally an instrumental phase bandpass because
It is stable across the experiment and can be solved on an ensemble of bright calibrators

Az, £, pp) = Po + P2-1(f)

~|Ix[<<|=|=[<[<|=]=|+]=]~[x]x
SN SIM S DS S
VSISV IS IS [ A S [ ]
IAARNANNNANENNEE
Al A A A A S -]
=1 A
==~ A== =D Y
~ID =AY
MNIENNAESSNNENENE
INANNINNNINENNAE
A [ I ]
A A N A
|-~ == S
~[SIN A S S D
\IIII\\HH\!I!HH
TNE B

v I el I el R delay-rate —8-

—

}
f
\

Im[r]

frequency
delay

\
{

|
f
/

time
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@> Fringe fitting: delay

Ad:(t, £, pp)

frequency
A A A A A A A A ) -
ad o i I e e o e o ol ol ol R R R
INNNONOODODODNDNNNE
s s HHHHHHHHHHHHH -
AN A NA VAN
delay

T

After removing non-linear phase vs frequency, we can extract a clean linear fit to delay for this scan

= ot P2.1(f) + 27(f-fret) T pp

delay-rate
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&> Fringe fitting: delay-rate

frequency

As well as delay-rate, although this is poorly defined in the presence of rapid atmospheric fluctuations

AdAt, £, pp) = o + P2-1(f) + 2n(f-fre) T,pp + 27f(t-Lref) Tpp
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@> Fringe-fitting: atmospheric phase

frequency

And finally we can estimate and correct for atmospheric phase, here referencing to the first antenna

Ada(t, £, pp) = Po + P21(f) + 2(f-fret) T,pp + 20f(t-trep) Tpp + P2-1(1)

— - - -] ]|
A EEE RS
T EEEEEERRERR
R
= EEEE RS
R
A EEEE RS
R
R
I EEEE RS
R
R
= EEEE RS
R
A EEEE RS

time

NOW WE Can average over the

entire scan and bandwidth
8-

Im|[r]

delay

delay-rate
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> Phase calibration pipeline

For mm-VLBI such as EHT, custom pipelines are required due to uniqueness of data and systematics
Purpose of steps is to fit as simple a model as possible, using as much S/N as available, and maintain closure (station-based gains)

I FITS-IDI (correlator output) I fringe fitting
FITS-IDI (correlator output)
* ehtutil.ehtpang:
. p lizati parallactic angle
amplitude normalization calibrator phase calibration flagging and normalization correction
I Mark4 data (correlator output) I fitsid
importfitsidi: ; . FITLD+MSORT:
* fringe files (fourfit output) load the data o tfl’lnlgefft : data loading 1st KRING:
ptimal solution
: scan-based all IFs
fourfit stages v intervals based on S/N phase + delay + rate
postprocessing ACCOr: * ehtutil. ancor:
default config, flags scale autocorrelations fringefit antenna correction 2nd KRING:
: ringefit: :
to unit
UVFITS conversion i ? extend coherence time scan-based each IF
phase bandpass + ehtutil.ehtfgin: phaset+delay
T . scalar bandpass load flag tables
a priori amplitude fringefit: 3rd KRING:
atmospheric phase parallactic angle : T ALMA phase offsets
P P field rotation science target phase calibration I P ACSCL: 2});22:&;28
v amplitude
R-L delay offsets f” ’”lgefft: _ fringefit: normalization
R/L gain ratio . Optimal solution instrumental 4th KRING:
intervals based on S/N phases & delays EDITA- scan-based each IF
close fringe solution v + flavaing t phase + delay + rate
. agging in time
network amplitude multiband fringefit ggimng
fringefit:
multlbanq delays & BPASS+BPEDT : postprocessing
. atmospheric residuals flagging in frequency
UVFITS data postprocessing i a priori and network
Y amplitude calibration
amplitude calibration bandpass: ACSCL:
D per-channel phases amplitude
normalization

Y

UVFITS data

“EHT-HOPS” (Blackburn+ 2019)

CASA “rPicard” (Janssen+ 2019)
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Some things that can go wrong

Too many free parameters for available S/N

Introduce calibration noise
Overfit data: bias amplitude upward, bias phase toward model
Underutilize array constraints and gain priors

Averaging over visibilities when gain is not stable

Introduce non-closing errors (averaged product of station gains may not factor)

Leaving in bad data / Ignoring systematics

Wrong calibration solutions
Systematic errors drive solution under the assumption of Gaussian thermal noise only
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@%} Thermal errors: origin

Thermal (statistical) error due to contribution from independent system noise at each site. For a
normalized correlation coefficient and white noise, this follows from the central limit theorem,

2 AtAv

Thermal noise is Gaussian and independent in real, imaginary components, and thus scales very simply
under vector average and scaling by any visibility amplitude factors. Still, it is always good to check!

0.100}
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PDF
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“Closure-phase” differencing, e.g. Ortiz+ 2016
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€>: Thermal errors: non-Gaussianity

Thermal error is Gaussian in complex
visibility, not necessarily in amplitude & phase

common estimators of phase error will
give large reduced chi-square at low S/N

phase random variable

4' o 5 101
C P 3 — p=5
Imlr/o.] [ % — Y 0=
2 2 3
: ‘ SRk S 103 -
IR B N PR B 7Pl c
-4 -2 I 2 4 .6 % 1074 4
—of Relr/o/] | - 105 . . . . . .
i ~150 -100 —50 0 100 150
A - measured phase [deq]
i A Phase error vs expectation
N L P ' |
] 5| T ]
- — i — L i
4 i IO p— 2 Tg i (¢ %) 10 |
Im|r/o.] [ — 3T (@—d)p ]
I S [ ’ I
2| (-9 ams -
' 720 .
I | I =
—4 o - TEEREEIY 6 g1 —
i o 1T 1
of Relr/o, L :
I 0L ey e N ST B
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@%} Systematic errors: closing vs hon-closing

Closing errors (manageable) Non-closing errors (try to minimize)
Errors in gain calibration: Vij =gi g; |tij + Njj . Non-thermal baseline errors: Vijj = gi gj’ Iij + Nij|+ €ijj
'HOPS ~ [CASA  TAIPS 00w=0m
SMT LMT ? L [1113/1120 | £1106/1090 | 0185/1021 Uicz(ffﬁsz_
6 | | ' | . % 0.4F 06/1120 1.0O7/1090 10O3/1021 |
o DIFMAP * M&7 x = s =102 s =1.03° ; I s =0.04° -
x eht-imaging o 30279 i s / I
41 SMILT - = 0.2F i
0 Tg _
~ 5 ii 2
u| A g‘l—l"-'_r -—'_rr
2| Ll N T P L e R “3
u] A ' .
.................. ii%iﬂﬂmg*m g%aaﬁau L} t (Tr1v1al wC)/Uwc
5 A 6 3 5 1 6 g Difficult to estimate, possibly reflected in trivial closure phases and amplitudes
UTC (h) UTC (h) : polarization leakage, band-pass non-overlap, coherence issue, etc

Commonly modeled as additional Gaussian RV:

Possibly reflected in high/low band comparison, pipeline comparison, etc
2 . 2 2

0" =0y + S s~ 1-2%

If uncertain, best left for self-calibration (do not “inflate” data errors)

but be careful! most likely not independent across data points (do not average..)

EHTC 2019 ApJL 875 (Paper V) EHTC 2019 ApJL 875 (Paper lll),Wielgus+ 2019
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@%} Covariant errors

The noise properties of the correlation coefficients from the correlator are very simple:
Gaussian noise in real and imaginary components, independent across all data products

This is ideal for model fitting, calculating likelihoods, goodness-of-fit, etc.. messing with the data just makes it worse

Simple example — Gain error: Vi =|gi|g;" rij + Nijj

More complicated example — Closure phase

If Gaussian, can be captured by covariance matrix (e.g. for log amplitude)

2, 2 .2 2 2
((712"'023"‘013 012 073 \
01, +0or 00 o o \
12 g2’1 8:2 5 5’1 5 g,z 2o = ‘7%2 0%2""7%4"“7%4 ‘7%4
2 — O, 1 013 +0 1 +0 3 0,3 ]
a g ) g2, 5 , § ’ , \ _0%3 g% ’ 0%3 + 0'% 4+ 0'% A ) covariance over 3
Oy T, 3 03+ 0,2+0,3 / - closure phases

Blackburn, Pesce+ 2019

lgnoring covariant errors often leads to confidence intervals which are too small!

It can be fun and instructive to use covariant errors, but make sure there is a very good reason
before moving away from forward modeling into simple data products..
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&>: Validation

After a lot of work, we want to make sure we have good data, and not bad data!

Closure quantity & pipeline cross-comparison

_06[HOPS  TCASA  TAIPS  [C3C279-
S [ O59/1231 [ 0159/1178 [ 0141/980 OM87 |
T 1 O0/529 | O3/444 | O1/334
-
= 0.4r T
S_j L
D’—c L
= |
< 0.2r T
< i
O
2|

0.0%= o

(We, 1ow — ¥, high)/ Ty

_06[HOPS  TCASA  TAIPS  [03C279-
o [ 042/3054 | £189/2916 | £160/2447 OMS7 |
T 1O0/8%0 | 010/659 | 02/400
-
=0.4
8 L
€2
e,
< 0.2
<
)
N

=
o

—3

i

3

(In Ac 10w — In A high)/0m Ac

'https://www.bu.edu/blazars/songs/baddata.html

number of measurements

number of measurements

Self-consistency of baseline-
based delay solutions

(LI LA L BN L LA LA B

- RR-LL Delay BN SGRA

<01 NRAO530
B J1924-2914
BN 17494096
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40
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0
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