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PSR B1257+12
Wolszczan & Frail, Nature 
355, 145 (1992)

Transit data from Kepler-11

Lissauer et al., Nature 470, 53 (2011).

Sometimes periodic signals jump out at you!



But more often we are faced with data like this:

Or this:

GBT data on PSR B1828-11

CHIME/FRB Collaboration, Nature 582, 351 (2020)



Outline of talk:

1. Searching for radio pulsars
• Dispersion
• Periodicity
• Acceleration

3. Searching in sparsely-sampled data
• Epoch-folding, Bayesian methods, high-energy pulsars
• CLEAN, Lomb-Scargle
• Repeating Fast Radio Bursts

4. Timing Pulsars
• Template matching
• Template construction



What do we have to look for when trying to 
find pulsars?

Pulsar search parameters:

Dispersion

Acceleration

Periodicity

This takes a few CPU cycles...



Lorimer et al., 2007, 
Science 318, 777.

Vela pulsar at Parkes

Dispersion: due to partially ionized gas in the interstellar medium.
The pulse is delayed from infinite frequency by

for t in seconds, f in MHz, and DM in pc cm-3. 
t =

DM

2.41⇥ 10�4

1

f2
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For data from a radio telescope that can be searched for 
pulsars:

• Wide bandwidth is divided into many small “filterbank” 
frequency channels with width Dn

• Filterbank data streams are then “detected” → total power 
and

• Rapidly sampled, at rate Dt (typically tens of µsec)

• Observation time T seconds (typically hundreds)

This quickly leads to PB of data. 



What frequencies are we sensitive to?

The total number of samples is T/Dt = N, and it’s real data, not 
complex.

If we take a Fourier Transform, we’ll have N/2 frequency bins, 
each with amplitude and phase.

Each frequency bin will have width 1/T, making the highest 
frequency accessible N/(2T) = 1/(2 Dt).  This is the Nyquist 
frequency.



We have data…. Let’s start checking different Dispersion 
Measures (DMs) and periods!  

Not so fast! First we need to get rid of Radio Frequency 
Interference (RFI).  RFI can be impulsive, periodic, broadband, 
narrowband…. The challenge is to identify and zap it without 
zapping interesting signals!

Rfifind routine from 
presto code:
https://github.com/scottransom/presto

Mask



Does zapping RFI help?

Let’s take an FFT of the 
unmasked data, collapsed to 
DM=0.



Does zapping RFI help?

Now an FFT of the masked 
data, collapsed to DM=0.



The first scientific step in any pulsar searching is forming 
frequency-collapsed time series for each of many possible 
trial DMs.

The Taylor tree algorithm (Astron. Astrophys. Suppl. 15, 367 
(1974)) is still the classic, most-used algorithm, making the 
process NlogN instead of N2.



We even still use a 
version of the tree 
algorithm (bonsai) for 
CHIME Fast Radio 
Burst searching 
(image: K. Smith). But there is competition now from 

the FDMT algorithm (Zackay & Ofek, 
ApJ 835, 11 (2017)



Now we can go through the DM trial time series, and check each 
one for periodicities.  Let’s take an FFT of one time series at DM 
of 157 pc cm-3 (dereddening is also usually necessary):

Lots of signals above the noise –
and a spacing of about 2.5 Hz.  
These are harmonics of the 
pulsar’s spin frequency.



With an interesting periodiocity identified at around 2.5 Hz, we 
can “fold” the dedispersed data on itself at that frequency and 
refine it to see what the actual pulse profile looks like:

The pulse is very 
narrow, as 
expected from the 
existence of so 
many harmonics.



Most radio pulsars are much weaker than this and can’t be picker 
out by eye like that one.  Summing up the harmonics can help
identify them:  Stretch the spectrum by 2 and add to original, then 
repeat…

Ransom et al. 2002, AJ 124, 
1788.

How well this does depends 
on the duty cycle of the 
pulsar – wide profiles don’t 
have many harmonics, so 
summing mostly means 
adding noise.



If the pulsar’s frequency doesn’t land in the centre of a frequency 
bin (width 1/(total time T), then sensitivity is reduced.

Ransom et al. 2002, AJ 124, 
1788.

Correction of this 
“scalloping” effect by 
“interbinning” – Fourier 
interpolation between 
neighbouring bins.



Some of the most exciting 
pulsars are in short-period 
binaries, so their observed 
frequencies aren’t constant 
over an observation.  So
we need to search over 
acceleration space as 
well.

“Stack search” on long 
integrations (Faulkner et al. 
2004, MNRAS 355, 147) –
computationally cheap but 
low-sensitivity as 
incoherent. 



Coherent acceleration search methods are more sensitive.  
These include:

• Resampling the time series at many different trial 
accelerations before the periodicity search

• Looking for correlated signals in the frequency domain 
based on templates representing different accelerations 
(equivalent to resampling, but faster; Ransom et al. 2002, 
AJ 124, 1788)

• Phase modulation searches looking for the full extent of the 
frequency changes for binary orbits << observation time 
(Ransom et al. 2003, ApJ 589, 911)

• Dynamic power spectrum searches – similar to stack/slide.



A periodicity search can produce a lot of candidates.  Is it worth 
looking at everything above signal-to-noise of 3?  No!  You are 
looking at the same data set in multiple different ways, increasing 
the number of trials.  For a Fourier-amplitude search, the
minimum interesting SNR is:

For most pulsar searches, this is about 8.

Still need human (and often now machine-learning) sifting.

SNRmin =

p
ln(ntrials)�

p
⇡/4

1� ⇡/4
'

p
ln(ntrials)� 0.88

0.47
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The slowest pulsars are the most affected by red noise,
leading to many false positives in the low-frequency
candidates. One way to fight this is with the Fast Folding 
Algorithm (FFA; Staelin 1969, IEEEP, 57, 724):

• Similar to FFT in avoiding duplicate summations (NlogN)

• Also good for finding faster, but weaker pulsars with lots of 
harmonics.

• Used in exoplanet transit searches as well!

PSR 2004+3137 –
Parent et al. 2017, 
ApJ 861, 44



Radio data have high time and frequency resolution.

What if your data consist of events such as photon detections?  

10.5-day 
period

16.6-day 
period

Epoch folding 

https://imagine.gsfc.nasa.gov/science/toolbox/timing2.html

https://imagine.gsfc.nasa.gov/science/toolbox/timing2.html


Epoch folding can be improved on, eg by making it 
Bayesian (Gregory & Loredo 1992, ApJ 398, 146) and 
comparing the data to an unmodulated signal.

Gregory & Loredo 1996, 
ApJ 473, 1059

Comparison of GL 
method with Epoch 
Folding of ROSAT data 
on PSR B0540-69.

There are other 
algorithms, too: H-test, 
Zm

2 test…



More ways of dealing with unevenly-sampled data… 

Timing residuals for PSR B1828-11, Stairs et al 2000, 
Nature 406, 484.

CLEAN algorithm



This is a 1-D CLEAN algorithm, adapted from interferometry.
• Compute direct FT of data → “dirty spectrum”
• Compute FT of sampling times → spectral window
• Identify peak in dirty spectrum → “clean component”
• Subtract (fraction of) clean component convolved with 

spectral window
• Iterate until noise remains.
• Make clean spectrum from clean components and spectral 

window.
Roberts et al. 1987, AJ 93, 968.

Stairs et al 2000, Nature 406, 484.



https://docs.astropy.org/en/stable/timeseries/lombscargle.html

See also https://arxiv.org/pdf/1703.09824.pdf for a thorough review.

Another well-known algorithm for these cases is Lomb-
Scargle, effectively fitting a sinusoid at multiple frequencies 
and taking the c2 of the fit for the periodogram.  It allows an 
estimate of the false-alarm probability (0.01 in the example).

https://docs.astropy.org/en/stable/timeseries/lombscargle.html
https://arxiv.org/pdf/1703.09824.pdf


https://docs.astropy.org/en/stable/timeseries/lombscargle.html

The true period in the data is 0.41 days (inset).  What are 
those peaks at 0.29 days and 0.69 days?  They are aliases.  
The observations happen about 1/day, so we can expect to 
see power at                                     for integer n.

LS can be sensitive to frequencies above the Nyquist 
frequency – have to be careful!

fobs = ftrue ±
n

day
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CHIME/FRB Collaboration, Nature 582, 351 (2020)

This is the repeating FRB “R3” for which we found a 
periodicity last year.  Bursts often come in clumps (red and 
green triangles).

Effective folding, H-test, FT with incoherent harmonic 
summing all yield a period of 16.35 days.  But CHIME is a 
transit telescope, so we have to allow for aliasing:

But we argue that N=0.

ftrue =
N

sidereal day
± fobs
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Coming back to pulsars, we want to take advantage of the 
reproducibility of the pulse profiles to determine precise 
Times of Arrival (TOAs) for high-precision timing.

This is done by cross-correlation, with some tricks.

Standard
profile

Observed
profile

Measure 
offset



Lighthouse
model

Add together several hundred
pulses è stable “integrated profile”

First we have to average over enough profiles to get a 
stable one – individual pulses vary a lot.



Most teams do the cross-correlation in the frequency domain, 
following Taylor 1992.  The multiple harmonics give a better 
estimate of the phase shift. 

Standard profile and its 
Fourier representation for 
PSR B1534+12 at 430 
MHz.



Standard
profile

Observed
profile

Measure 
offset

p(t) = bs(t+ ⌧) $ Pke
i✓k = bSke

i(�k+k⌧) + noise + constant
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Minimize:



We have to build the standard profile, or template, out of 
existing observations with the same observing parameters.

But there can be problems when the profiles used are too 
noisy: you can end up cross-correlating the noise!

Hotan et al 2005, 
MNRAS 362, 1267.
256 noisy profiles were 
used to make the 
standard, and the
measured shift (in the
frequency domain) 
was wrong for those.



So we’ll use high-SNR profiles (SNR > 25) to make the standard
profile.

Another good idea: eliminate/reduce baseline noise by:

• Smoothing the standard profile eg using wavelets

• Zeroing out the baseline

• Making an analytic profile from a set of Gaussians



Pennucci et al. 2014, ApJ, 790, 93

Another concern: 
frequency dependence of 
the profile, here seen for
M28A.

Evolving gaussians were
a first attempt at a 2-d
template, but now a PCA-
based template is giving
better results.



Conclusions

The “best” technique for finding a periodicity depends 
strongly on the sampling of the data.

Watch out for aliasing!

Periodic signals can be useful once found, and the 
frequency domain is an excellent way to characterize and 
manipulate them.

New and improved algorithms always needed!

Please do the survey at http://bit.ly/TimeDomainII

http://bit.ly/TimeDomainII

