

VLBI Data & Errors

Event Horizon Telescope Collaboration Center for Astrophysics | Harvard & Smithsonian

Lindy Blackburn

nomy and Astrophysics Librar

Richard Thompson James M. Moran George W. Swenson Jr. Interferometry and Synthesis in **Radio** Astronomy

Third Edition

Tetsuo Sasao and André B. Fletcher Introduction to VLBI Systems Chapter 4 Lecture Notes for KVN Students Partly based on Ajou University Lecture Notes (to be further edited) Version 1. (Unfinished.) Issued on February 19, 2006.

Very Long Baseline Interferometry

Der Springer Open

Contents

1	Tec	Technologies Which Made VLBI Possible 4						
	1.1	Basics of Digital Data Processing						
		1.1.1	Analog Processing Versus Digital Processing	5				
		1.1.2	Sampling and Clipping	6				
		1.1.3	Discrete–Time Random Process	6				
		1.1.4	Stationary Discrete–Time Random Process	9				
		1.1.5	Sampling	10				
		1.1.6	Comb Function	12				
		1.1.7	Fourier Transform of a Comb Function Is a Comb Func-					
			tion \ldots	13				
		1.1.8	Spectra of Discrete–Time Processes	14				
		1.1.9	Spectra of Sampled Data	17				
		1.1.10	Inverse Relations for Spectra of Sampled Data	19				
		1.1.11	Sampling Theorem	20				
		1.1.12	Optimum Sampling Interval	22				
		1.1.13	Sampling Function	25				
		1.1.14	Correlations of Nyquist Sampled Data with Rectangu-					
			lar Passband Spectra	28				
		1.1.15	S/N Ratio of Correlator Output of Sampled Data	33				
		1.1.16	Nyquist Theorem and Nyquist Interval	36				
		1.1.17	Higher–Order Sampling in VLBI Receiving Systems	37				
		1.1.18	Clipping (or Quantization) of Analog Data	39				
		1.1.19	Probability Distribution of Clipped Data	42				
		1.1.20	Cross–Correlation of 1–Bit Quantized Data:					
			van Vleck Relationship	46				
		1.1.21	van Vleck Relationship in Autocorrelation	51				

Synthesis Imaging in Radio Astronomy II

A Collection of Lectures from the Sixth NRAO/NMIMT Synthesis Imaging Summer School. Held in Socorro NM 1998 June 17-23. Edited by G. B. Taylor, C. L. Carilli, and R. A. Perley

ome	About NRAO	Science	Observing	Opportuniti	es	SRDP	VLASS	noVL	
020	testings Colloquia	Highlighte	Science Program	Surveye	Sarvia	e Observing	laneky Lectureshi	Euture	
> Meetin	gs > 2018 > 16th Synthesis	Imaging Workshop	> SIW2018 Lectures	Surveys	Jeivi	ce observing	Sunsky Lecturesm	, rucure.	
me		SIW2018 Lectures							
ectures articipants		by <u>Joshua Maryi</u> – last modified Jul 23, 2018 PDF slides from the 16th Synthesis Imaging Workshop can be downloaded from the table below follow on the stift)							
oto		Video recordings of the rectures can be accessed from this link: 16th Synthesis Imaging Workshop Videos We encountered a couple technical issues with the video recordings. Most notably, slides were not							
		captured prope	rly for presenters while	to used their ow	vn lapt	tops; for these ta	ks we recommend d	ownloading	
		web browsers i	may be compatible w	ith the video fo	irmat a	and/or browser pl	ugins may interfere	with	
		playback. Selee	t 'Sort by: Order' to	ensure the list	of vid	eos matches the	able below.		
				Lecture			Speaker		
		Basics of Ra	dio Astronomy				Lisa Young (NM	IT)	
		Antennas & Receivers in Radio Astronomy					Mark McKinnon (NRAO)		
		Fundamentals of Radio Interferometry I					Rick Perley (NRAO)		
		Fundamentals of Radio Interferometry II					Rick Perley (NRAO)		
		Fundamentals of Radio Interferometry III					Bryan Butler (NRAO)		
		Interrerometry or Solar System Objects					Adam Deller (ASTRON)		
		The High-Redshift Universe, Magnified					Dan Marrone (UA)		
		Cellbastics					George Moellenbrock		
		Calibration					(NRÃO)		
		Imaging and Deconvolution					David Wilner (CfA)		
		Advanced Calibration I					Crystal Brogan (NRAO)		
		Advanced Calibration II					Crystal Brogan (NRAO)		
		Ine VLA Sky	Survey	the Transien	t Clas		Alessandra Cor	(NRAU)	
		Spectral Line	a Data Analysis	r the transien	L SKY		Xiva Pibletrom		
		Polarization	outu Anurysis				Frank Schinzel	(NRAO)	
		Mosaicing					Brian Mason (N	RAO)	
		Very Long Ba	aseline Interferom	etry			Adam Deller (A	STRON)	
		Low Frequer	cy Interferometry				Tracy Clarke (N	IRL)	
		Astrochemistry					Brett McGuire (NRAO)		
		Wideband an	Urvashi Rao (N	Urvashi Rao (NRAO)					
		Wideband and Wide-field Imaging II					Urvashi Rao (N	Urvashi Rao (NRAO)	
		Protoplaneta	Hui Li (LANL)						
		II Zw 40: A Test Case for Studying Baryon Cycling in the Nearby					Amanda Kepley (NRAO)		
		Error Record	aition				Greg Taylor (III	(M)	
		Image and Non-imaging Analysis					Greg Taylor (UNM)		
		Array Design					Craig Walker (1	Craig Walker (NRAC)	
							Lorant Sjouwer	Lorant Siouwerman	
		VLA Planning your Observation - Lecture					(NRAO)		
		ALMA Planning your Observation - Lecture					Rachel Friesen (NRAO)		

- Interferometry and Synthesis in Radio Astronomy Thomson, Moran, Swenson (TMS)
- Synthesis Imaging in Radio Astronomy II Ed: Taylor, Carilli, Perley
- KVN Lecture Notes Sasao, Fletcher
- Synthesis and Imaging Workshop 2018 Presentations NRAO

• Relates spatial coherence of wavefront with brightness distribution of distant source

point source

$$\langle E_1 E_2^* \rangle = S_{\nu}$$

Van Cittert-Zernike theorem

• Relates spatial coherence of wavefront with brightness distribution of distant source

point source

$$\langle E_1 E_2^* \rangle = S_{\nu}$$

shifted point source

$$\langle E_1 E_2^* \rangle = e^{-2\pi \mathbf{u} \cdot \boldsymbol{\sigma}} S_{\nu}$$

Van Cittert-Zernike theorem

BH PIREVLBI Data Series — Mar 11, 2020

• Relates spatial coherence of wavefront with brightness distribution of distant source

point source

$$\langle E_1 E_2^* \rangle = S_{\nu}$$

shifted point source

 $\langle E_1 E_2^* \rangle = e^{-2\pi \mathbf{u} \cdot \boldsymbol{\sigma}} S_{\nu}$

extended source (integration over many point sources)

$$\begin{split} \langle E_1 E_2^* \rangle &= \iint e^{-2\pi \mathbf{u} \cdot \boldsymbol{\sigma}} I_{\nu}(\boldsymbol{\sigma}) \, d\Omega \\ &= \mathcal{V}(\mathbf{u}) \qquad \text{``Visibility function''} \\ &= \operatorname{components of the sky brightness} \end{split}$$

Time-shift antenna to form baseline vector taken in the plane of propagation (Linearize about phase center)

 $| au_g|$

2

Q

• Relates spatial coherence of wavefront with brightness distribution of distant source

point source

$$\langle E_1 E_2^* \rangle = S_{\nu}$$

shifted point source $\langle E_1 E_2^* \rangle = e^{-2\pi \mathbf{u} \cdot \boldsymbol{\sigma}} S_{\nu}$

extended source (integration over many point sources)

$$\begin{split} \langle E_1 E_2^* \rangle &= \iint e^{-2\pi \mathbf{u} \cdot \boldsymbol{\sigma}} I_{\nu}(\boldsymbol{\sigma}) \, d\Omega \\ &= \mathcal{V}(\mathbf{u}) \qquad \text{``Visibility function''} \\ &= \operatorname{encodes 2D \ complex \ spatial \ free encodes \ encode$$

Ingredients of a VLBI measurement

Reid & Honma

We just need to measure E_1 and E_2 at various locations in the plane of propagation, but..

- Earth is round & moving
- Irregular delays from troposphere/ionosphere 2.
- 3. Different atmospheric and receiver noise
- Various electronics and path delays 4.
- Independent and imperfect clocks at all stations 5.
- Post-digitization artifacts 6.
- Unexpected data issues 7.

In data reduction, we are asked to "hide" as many of these effects as possible (without ruining the data)

VLBI data and calibration pathway

Lir

Gains, Polarization, and the Measurement Equation

Propagation of the astrophysical signal E through measurement v can be characterized by complex gain factors g

$$v(t,f) = g(t,f)E(t,f) \qquad \langle v_1v_2^* \rangle = g_1g_2^* \langle E_1E_2^* \rangle$$

Signal and ensemble averages are parameterized in time and frequency, which requires that g is varying (relatively) slowly

For two orthogonal feeds of an antenna, this can be written in matrix form,

$$\begin{pmatrix} v_L \\ v_R \end{pmatrix} = \begin{pmatrix} g_L & 0 \\ 0 & g_R \end{pmatrix} \begin{pmatrix} E_L \\ E_R \end{pmatrix} \qquad \begin{pmatrix} \langle v_{1L} v_{2L}^* \rangle & \langle v_{1R} v_{2L}^* \rangle \\ \langle v_{1R} v_{2L}^* \rangle & \langle v_{1R} v_{2R}^* \rangle \end{pmatrix} = \begin{pmatrix} g_{1L} & 0 \\ 0 & g_{1R} \end{pmatrix} \begin{pmatrix} \langle E_{1L} E_{2L}^* \rangle & \langle E_{1R} E_{2L}^* \rangle \\ \langle E_{1R} E_{2L}^* \rangle & \langle E_{1R} E_{2R}^* \rangle \end{pmatrix} \begin{pmatrix} g_{2L}^* \\ 0 & g_{2L} \end{pmatrix}$$

Tracking various physical propagation effects, as well as non-zero off-diagonal "D" terms (leakage across feeds, or change of polarization basis), leads to Jones matrix formalism used by the Measurement Equation

$$\mathbf{v} = \mathbf{J}_a \, \mathbf{J}_b \cdots \mathbf{J}_z \mathbf{E} \qquad \langle \mathbf{v}_1 \mathbf{v}_2^{\dagger} \rangle = \mathbf{J}_{1a} \, \mathbf{J}_{1b} \cdots \mathbf{J}_{1z} \, \langle \mathbf{E}_1 \mathbf{E}_2^{\dagger} \rangle \, \mathbf{J}_{2z}^{\dagger} \cdots \mathbf{J}_{2a}^{\dagger} \, \mathbf{J}_{2b}^{\dagger} \qquad \text{(see Smirnov 2)}$$

Why so many? Physical model generally allows for least complexity. Note that matrices do not necessarily commute!

This is a very useful structure! One still must adopt good models for all the Jones matrices.. also track noise..

MIT Haystack Observatory Max Planck Institute for Radioastronomy

MIT Haystack Observatory Max Planck Institute for Radioastronomy

Flux calibration (a priori)

The correlation coefficient is normalized by the system noise in the separate receiving systems

Relating this to physical units of correlated flux density requires a calibration of the noise power

The SEFD is calibrated separately from the data using first principles, known bright calibrators (planets), and noise sources of known temperature placed directly in front of receiving elements, and is taken "a priori"

$$|V_{ij}| = \sqrt{\text{SEFD}_i \times \text{SEFD}_j} |r_{ij}|$$

This is encapsulated into the system-equivalent flux density (SEFD) at each site, which is the (measured) noise power in units of flux density from an unpolarized astrophysical source (above the atmosphere)

For a heterogeneous array such as the EHT, SEFD can range by orders of magnitude $\sim 10^2$ to $\sim 10^5$ Jy

EHTC 2019 ApJL 875 (Paper III), Issaoun+ 2017-CE-02

Closure relationships

At mm-frequencies, phase transfer from nearby calibration targets is very difficult or impossible so we have essentially no a priori information about station phase

$$r_{12} = \frac{\langle x_1 x_2^* \rangle}{\eta_Q \sqrt{\langle x_1 x_1^* \rangle \langle x_2 x_2^* \rangle}} = \frac{e^{i\theta_1} e^{-i\theta_2} \mathcal{V}_{12}}{\sqrt{\text{SEFD}_1 \times \text{SEFD}_2}}$$

However there are N(N-I)/2 baseline measurements of phase, yet only (N-I) unknown station phases, so the measurements do capture structural phase information about the source

This information is captured by the "closure phases"

insensitive to relative phase of each antenna: N-1 degrees of freedom removed from baselines

Time-frequency ensemble average: source constraints

EHTC 2019 ApJL 875 (Paper II)

The correlation coefficients measured by the interferometer relies on finite averages to estimate expectation value

 $\langle v_1 v_2^* \rangle = g_1 g_2^* \langle E_1 E_2^* \rangle$

What are the limits from the source?

$$\langle E_1 E_2^* \rangle = \iint e^{-2\pi \mathbf{u} \cdot \boldsymbol{\sigma}} I_{\nu}(\boldsymbol{\sigma}) \, d\Omega$$
$$= \mathcal{V}(\mathbf{u})$$

Interferometer sweeps through ~FOV/beam measurements in 24h For EHT sources of ~few² independent pixels, coherence length ~hours

A ~few pixels across a spatial dimension means >10% fractional bandwidth can be averaged without affecting independent measurements

> Compact EHT sources implies intrinsic smoothness/stability in time and frequency for the model visibility

Time-frequency ensemble average: phase systematics

What about variability in gain parameters?

$$\langle v_1 v_2^* \rangle = g_1 g_2^* \left\langle E_1 E_2^* \right\rangle$$

First-order phase systematics

$$\Delta \phi = \frac{\partial \phi}{\partial \nu} \Delta \nu + \frac{\partial \phi}{\partial t} \Delta t$$

Delay-rate (rate) Delay

~ —	$1 \partial \phi$		`	÷ –	1	$\partial \phi$
/ —	$\overline{2\pi}$	$\overline{\partial u}$	1	/ —	$\overline{2\pi\nu}$	∂t

Large delays and rates taken out at Correlator at high time-frequency resolution using a priori Earth model (calc)

We only worry about residual clock errors

0.5s × 0.5 MHz dump time, bandwidth

 \rightarrow rates within ~2 ps/s (1.3 mm/s)

 \rightarrow delays within $\sim 1 \ \mu s$

Fringe fitting

Fringe fitting involves self-calibration of residual clock errors to extract and average correlation coefficient At high frequencies, there are linear and non-linear residuals in phase vs frequency and phase vs time

 $\Delta \phi_{12}(t, f, pp) = \phi_{\theta}$ (a priori phase corrections)

Fringe fitting: phase bandpass

First correction is generally an instrumental phase bandpass because It is stable across the experiment and can be solved on an ensemble of bright calibrators

 $\Delta \phi_{12}(t, f, pp) = \phi_{\theta} + \phi_{2-1}(f)$

Fringe fitting: delay

After removing non-linear phase vs frequency, we can extract a clean linear fit to delay for this scan

 $\Delta \phi_{12}(t, f, pp) = \phi_{\theta} + \phi_{2-1}(f) + 2\pi (f - f_{ref})\tau_{,pp}$

Fringe fitting: delay-rate

 $\Delta \phi_{12}(t, f, pp) = \phi_0 + \phi_{2-1}(f) + 2\pi (f - f_{ref})\tau_{,pp} + 2\pi f(t - t_{ref})\dot{\tau}_{pp}$

As well as delay-rate, although this is poorly defined in the presence of rapid atmospheric fluctuations

Fringe-fitting: atmospheric phase

And finally we can estimate and correct for atmospheric phase, here referencing to the first antenna

 $\Delta \phi_{12}(t, f, pp) = \phi_{\theta} + \phi_{2-1}(f) + 2\pi (f - f_{ref})\tau_{,pp} + 2\pi f(t - t_{ref})\dot{\tau}_{pp} + \phi_{2-1}(t)$

now we can average over the entire scan and bandwidth

delay-rate

Phase calibration pipeline

For mm-VLBI such as EHT, custom pipelines are required due to uniqueness of data and systematics Purpose of steps is to fit as simple a model as possible, using as much S/N as available, and maintain closure (station-based gains)

"EHT-HOPS" (Blackburn+ 2019)

CASA "rPicard" (Janssen+ 2019)

AIPS (EHTC 2019 ApJL 875 (Paper III))

Some things that can go wrong

Too many free parameters for available S/N

Introduce calibration noise Overfit data: bias amplitude upward, bias phase toward model Underutilize array constraints and gain priors

Averaging over visibilities when gain is not stable

Introduce non-closing errors (averaged product of station gains may not factor)

Leaving in bad data / Ignoring systematics

Wrong calibration solutions Systematic errors drive solution under the assumption of Gaussian thermal noise only

Example Thermal errors: origin

Thermal (statistical) error due to contribution from independent system noise at each site. For a normalized correlation coefficient and white noise, this follows from the central limit theorem,

$$\sigma^2_{r,i}$$

Thermal noise is Gaussian and independent in real, imaginary components, and thus scales very simply under vector average and scaling by any visibility amplitude factors. Still, it is always good to check!

"Closure-phase" differencing, e.g. Ortiz+ 2016

 $=\frac{1}{2\,\Delta t\Delta\nu}$

Amplitude scatter, e.g. Wielgus+ 2019-CE-02

Thermal errors: non-Gaussianity

Thermal error is Gaussian in complex visibility, not necessarily in amplitude & phase

common estimators of phase error will give large reduced chi-square at low S/N

Systematic errors: closing vs non-closing

Closing errors (manageable)

Errors in gain calibration: $V_{ij} = g_i g_j^* r_{ij} + n_{ij}$

Possibly reflected in high/low band comparison, pipeline comparison, etc If uncertain, best left for self-calibration (do not "inflate" data errors)

EHTC 2019 ApJL 875 (Paper IV)

Non-closing errors (try to minimize)

Non-thermal baseline errors: $V_{ij} = g_i g_j^* r_{ij} + n_{ij} + e_{ij}$

Commonly modeled as additional Gaussian RV:

$$\sigma^2 = \sigma_{\mathrm{th}}^2 + s^2$$
 s ~ 1-2%

but be careful! most likely not independent across data points (do not average..)

EHTC 2019 ApJL 875 (Paper III), Wielgus+ 2019

Covariant errors

The noise properties of the correlation coefficients from the correlator are very simple: Gaussian noise in real and imaginary components, independent across all data products This is ideal for model fitting, calculating likelihoods, goodness-of-fit, etc.. messing with the data just makes it worse

Simple example – Gain error: $V_{ij} = g_i g_j^* r_{ij} + n_{ij}$

If Gaussian, can be captured by covariance matrix (e.g. for log amplitude)

Ignoring covariant errors often leads to confidence intervals which are too small! It can be fun and instructive to use covariant errors, but make sure there is a very good reason before moving away from forward modeling into simple data products.

Blackburn, Pesce+ 2019

https://www.bu.edu/blazars/songs/baddata.html

http://bit.ly/HandlingDataEval